
Getting to Know VisualAge C++ Version 4.0

Stephen Kurlow, Camille Pagee

International Technical Support Organization

SG24-5489-00

www.redbooks.ibm.com

International Technical Support Organization SG24-5489-00

Getting to Know VisualAge C++ Version 4.0

February 2000

© Copyright International Business Machines Corporation 2000. All rights reserved.
Note to U.S Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions
set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (February 2000)

This edition applies to Version 4.0 of VisualAge C++, Program Number 30L8360, for use with the IBM OS/2, Windows
NT, or IBM AIX Operating Systems.

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. QXXE Building 80-E2
650 Harry Road
San Jose, California 95120-6099

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way
it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in Appendix B,
“Special notices” on page 99.

Take Note!

Contents

Figures . vii

Tables . ix

Preface . xi
The team that wrote this redbook . xi
Comments welcome . xii

Part 1. Getting acquainted with VisualAge C++ Version 4.0 .1

Chapter 1. The leap to VisualAge C++ Version 4.0 .3
1.1 Incremental compilation and linking .3
1.2 What? No makefiles? .3
1.3 The codestore .4
1.4 Earlier error reporting .5
1.5 The latest C++ standard .5
1.6 Reusable libraries—Standard Template Library and OpenClass5
1.7 Integrated Development Environment .5

Chapter 2. About the sample project .7

Chapter 3. An introduction to configuration files .9
3.1 Targets .9
3.2 Sources .9
3.3 If you are migrating .11
3.4 A different route to compilation .11
3.5 Other useful references. .13

Chapter 4. Adding options .15
4.1 How options work .15
4.2 Applying an option to a limited number of sources16
4.3 Options with project-wide scope .16
4.4 Options in a makefile .17
4.5 How the makefile options are translated .19
4.6 Option types .19
4.7 Common options you might need .20
4.8 Other useful references. .20

Chapter 5. Promoting included files to the configuration file21
5.1 Why optimize so early? .21
5.2 First steps in optimizing .21
5.3 What to promote? .21
5.4 Is that all? .22
5.5 If you are migrating .22
5.6 Other useful references. .23

Chapter 6. Variables .25
6.1 User-defined variables in configuration files .25
6.2 Rules for using variables. .26
6.3 Example of a configuration file using variables .26
6.4 Variables make conditional processing easier .27
6.5 Variables in a makefile .28
© Copyright IBM Corp. 2000 iii

6.6 Other useful references . 29

Chapter 7. Running external tools . 31
7.1 The run directive . 31
7.2 Running tools before compiling and linking . 31
7.3 Tool commands in a makefile . 33
7.4 Other useful references . 34

Chapter 8. Building a shared (dynamic link) library 35
8.1 Advantages of shared libraries . 35
8.2 Configuration files simplify building dynamic link libraries 35
8.3 Linking against other dynamic link libraries . 35
8.4 About the example. 36
8.5 The libFramework.icc configuration file . 36
8.6 How do external tools fit into the incremental build process? 38

Chapter 9. Building an archive (static library) . 39
9.1 Static linking versus dynamic linking . 39
9.2 Configuration for building a static library . 39
9.3 Changing libUIFwk.icc to build a DLL . 40

Chapter 10. Building a resource library . 43
10.1 About the example . 43
10.2 Configuration file for a resource DLL . 43
10.3 Makefile for a resource DLL. 44
10.4 Differences between the configuration file and makefile. 45
10.5 Problems with building the resource library . 45
10.6 Other useful references . 46

Chapter 11. Building two targets in one configuration 47
11.1 Building schema and spp in one configuration . 47
11.2 Keeping in step with the one-definition rule . 47
11.3 Breaking the one-definition rule within one target 48
11.4 Why is the one-definition rule not enforced by other compilers? 49
11.5 Other useful references . 49

Part 2. Broader changes to your projects. 51

Chapter 12. Designing configuration files for project teams 53
12.1 Splitting a project into architectural areas . 53

12.1.1 Infrastructure . 53
12.1.2 User interface . 54
12.1.3 Business logic . 54

12.2 Your project’s directory structure . 54
12.2.1 Reasons for having a directory structure . 54
12.2.2 Avoiding time-consuming directory searches during builds 55
12.2.3 Be aware of platform differences . 56

12.3 Splitting a project into components . 56
12.4 Reusing elements of configuration files . 57

12.4.1 Design points for identifying reuse . 57
12.4.2 Promoted source directives for reusable components 57
12.4.3 Placement of reusable configuration files . 58

12.5 Organizing libFrameworkGroups.icc by grouping sources 59
12.5.1 Using groups in configuration libFramework.icc 59
iv Getting to Know VisualAge C++ Version 4.0

12.5.2 Defining groups in configuration libFrameworkGroups.icc60
12.5.3 Adding new files to groups .63

12.6 Organizing libFramework.icc by grouping options65
12.7 Organizing one or several targets into a configuration file65

Chapter 13. Techniques for better build efficiency67
13.1 Managing system header files .67

13.1.1 Reducing the size of a codestore .67
13.1.2 Promoting #include files .67
13.1.3 Isolating dependence on expensive header files68
13.1.4 Moving source and header files into a separate library69
13.1.5 Removing files that are no longer referenced71
13.1.6 Removing #include from all your source files.72
13.1.7 Results of applying these techniques in our project72

13.2 Developing multiple projects concurrently .73
13.3 Automating a project’s build process .73

13.3.1 Building our project components collectively73
13.3.2 Configuration file to implement our build process74
13.3.3 Problems with executing our build process76

Chapter 14. Techniques for more efficient C++ programming77
14.1 Find and eliminate literal strings used with IString77
14.2 Find and eliminate temporary copies of objects .79
14.3 Other useful references. .80

Chapter 15. Working in the IDE .81
15.1 See how your source code was interpreted .81
15.2 Using the IDE to investigate build errors .81
15.3 Quickly see and promote your included files .83

15.3.1 Notes on C source files .84
15.4 Which files include other files? .84
15.5 Customize pages .85
15.6 Search for objects, not for strings .86
15.7 See how your configuration file was interpreted87
15.8 IDE Shortcuts .89

15.8.1 Create new configuration files .89
15.8.2 Help on OpenClass classes. .90
15.8.3 Live Find .90
15.8.4 Switch pane focus .90
15.8.5 Start a build. .90
15.8.6 Show the link diagram .90

15.9 Make more real estate available .91

Appendix A. Guide to interface elements . 93
A.1 The workbook . 93
A.2 Pages . 94
A.3 Panes . 94
A.4 Toolbars . 97

Appendix B. Special notices. 99

Appendix C. Related publications . 101
C.1 Redbooks on CD-ROMs . 101
v

How to get ITSO redbooks . 103
IBM Redbook Fax Order Form .104

Glossary . 105

List of abbreviations . 107

Index . 109

IBM Redbooks evaluation . 111
vi Getting to Know VisualAge C++ Version 4.0

Figures

1. Outline of our project . 7
2. Traditional route to producing an executable or library 12
3. How VisualAge C++ Version 4.0 produces an executable or library 12
4. VisualAge C++ defect when building rSecMan.dll . 45
5. Errors produced when the one-definition rule is broken. 47
6. Find and replace a string . 56
7. Using the IDE to view a list of all files belonging to a subsystem. 63
8. Using the Open or Create File dialog box to create a new file 64
9. Adding a new source file to a source directive. 64
10. Showing all source files in the Source Files view. 68
11. The new structure of the project. 71
12. Searching for IString in the classes pane. 78
13. Finding uses of a string . 78
14. Identifying a compiler error due to a conflicting declaration 82
15. Identifying the conflicting declaration . 82
16. Value of YYSTYPE in first conflicting declaration . 83
17. Value of YYSTYPE in second conflicting declaration 83
18. An Include Hierarchy view of the payroll sample . 84
19. Temporarily disconnecting the link into a pane . 86
20. Interpreted ("preprocessed") configuration file . 89
21. Finding reference help for IBM OpenClass classes . 90
22. Tabs divide the major workbook sections . 93
23. Pages in the Host section . 93
24. Page buttons available in the Project workbook section 94
25. The pane menu . 94
26. The filter menu . 95
27. The object menu . 96
28. The view type menu . 97
29. The workbook toolbar. 97
30. The pane toolbar . 97
31. The view toolbar . 98
32. The process toolbar . 98
© Copyright IBM Corp. 2000 vii

viii Getting to Know VisualAge C++ Version 4.0

Tables

1. How makefiles differ from configuration files . 4
2. How options from the makefile appear in the configuration file 19
3. Assigning a value to three variables used for directory paths 26
4. Results of applying first two codestore optimization techniques 72
5. Results of applying the five codestore optimization techniques. 73
6. Examples of writing more efficient C++ code . 79
7. Clear up screen space in the IDE . 91
© Copyright IBM Corp. 2000 ix

x Getting to Know VisualAge C++ Version 4.0

Preface

This redbook will accelerate your learning of VisualAge C++ Version 4.0 for use
with IBM OS/2, Windows NT, or IBM AIX Operating systems, by taking you on a
journey to work through a typical small software project. The structure of this
small software project is detailed in Chapter 2, “About the sample project” on
page 7.

This small software project consists of several components. A couple of
executables will be progressively built as the book unfolds. The complexity will
increase to introduce the execution of external tools that will generate C++ files
that will need to be compiled and linked into the executables. A dynamic link
library (DLL) contains the C++ source code that will use these executables to
build the DLL. A static library contains the C++ source code. A comparison to
building this as a DLL is included. A resource library contains Windows resources
such as window definitions and externalized strings. A static library, upon which
the first DLL will depend, will be used as an example of a technique to enable
greater development efficiency.

First, we provide an introduction to concepts and basic syntax of a configuration
file, with examples. This will be especially useful for those who are new to
VisualAge C++ Version 4.0 and are starting to learn about configuration files.
Then we discuss how the structure of your projects, and the way you work with
them, may change, once you have made the initial transition to VisualAge C++.

The team that wrote this redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization San Jose Center.

Stephen Kurlow is a Software Engineer at the Business Integration Services
group of IBM Global Services Australia. He designs and builds Object-Oriented
and Client/Server applications for the IBM OS/2, AIX and Microsoft Windows NT
platforms using IBM VisualAge C++. He has acquired a Bachelor of Engineering
degree in Computer Systems Engineering at the University of Technology,
Sydney.

Camille Pagee is an Information Developer at the IBM Toronto Lab. She was part
of the documentation team for VisualAge C++ Version 4 and for IBM C and C++
Compilers for OS/2 and Windows, Version 3.6. At the time of publication, she is
working on online help for the next release. She holds a degree in Translation
and a certificate in Technical and Professional Writing from York University.

Thanks to the following people for their invaluable contributions to this project:

Joe DeCarlo, Project Leader
International Technical Support Organization, San Jose Center

Derek Inglis, Compiler Development
IBM Toronto Lab

Robert Klarer, Compiler Development
IBM Toronto Lab, Toronto, Canada
© Copyright IBM Corp. 2000 xi

Martin Lansche, VisualAge TecTeam
IBM Toronto Lab, Toronto, Canada

Dwayne Moore, Customer Support Representative
IBM Toronto Lab, Toronto, Canada

Paul Pacholski, Worldwide Sales Support for VisualAge C++
IBM Toronto Lab, Toronto, Canada

Silvio Zarb, Senior Analyst Programmer
Software Solutions ANZ, Asset Finance, Melbourne, Australia

Comments welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks evaluation” on page 111 to
the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an Internet note to redbook@us.ibm.com
xii Getting to Know VisualAge C++ Version 4.0

Part 1. Getting acquainted with VisualAge C++ Version 4.0

In the following eleven chapters, we introduce the basics of configuration files,
and contrast them with makefiles. You will learn the syntax of the most common
configuration file directives, and see examples of doing common build tasks.

If you are already very comfortable with configuration files, you may find the
"Other useful references" sections at the end of each chapter helpful.
© Copyright IBM Corp. 2000 1

2 Getting to Know VisualAge C++ Version 4.0

Chapter 1. The leap to VisualAge C++ Version 4.0

If you have heard little about VisualAge C++ Version 4.0, then you have likely
heard at least that it incorporates a new incremental compiler. This represents a
significant change in the way software developers build their source code. For the
most part, Version 4.0 represents change in the following areas:

• Incremental compilation and linking: this means compiling only those granular
parts, such as C++ methods, that have changed or been affected by change
since the previous build. This is in contrast to traditional batch compilers that
compile larger parts, such as entire files, that have changed or been affected
by the timestamp change of dependent files.

• Configuration files define what source code to build instead of makefiles which
define what steps to take and how to build your source code.

• A database called the codestore contains all project information—compiled
code, source code, and options—and eliminates the need to maintain file
dependencies, or generate object files.

• Earlier error reporting of C++ coding errors is provided.

• Richer OpenClass library reduces the number of classes you need to develop.

• You can write C++ code using the latest C++ standard.

• Templates are automatically instantiated (there is no need for a tempinc
directory).

• Loosely coupled tools such as the compiler, linker, LPEX editor and the
debugger are replaced with an Integrated Development Environment (IDE).

No matter how you look at it, change requires effort. In this book, our intention is
to reduce the effort of adapting to the new environment. If you have already made
the switch, and are finding that you are not maximizing the promised benefits of
ease of maintenance and improved build times, this book may help you refine
your techniques and get the most out of your investment.

1.1 Incremental compilation and linking

Build time is the major complaint of C++ programmers. With the advent of
VisualAge C++, the time required for both the initial build and subsequent
rebuilds of an application is reduced by as much as 10 times, depending on the
size of the application. Larger improvements are typically obtained with larger
applications.

With the right configuration, incremental builds are significantly faster than a
traditional batch compiler because the compiler and linker only work on what has
changed and leaves the rest as-is. If an existing function’s content is changed,
then only that function is recompiled and relinked. The cost of change is
proportional to its impact on your base of source code.

1.2 What? No makefiles?

Configuration file is not just a new name for a makefile. A makefile is a set of
instructions that tell a compiler what to do, and in what order. The incremental
compiler in VisualAge C++ does not see your build process as a set of steps.
© Copyright IBM Corp. 2000 3

Instead, it views your source files and outputs in terms of relationships. A
configuration file is more like a family tree than a set of procedures. The
differences can have a big impact on how efficiently the project is built. That is
why it is important not only to develop configuration files that will replace your
makefiles, but to go further and develop good configurations for your project.

For the most part, it is simpler to produce a configuration file, and easier to make
it work, than to do the same with a makefile. The major differences between a
configuration file and a makefile are summarized in Table 1.

Table 1. How makefiles differ from configuration files

1.3 The codestore

The first time you build a project, a codestore is created. Every function,
declaration or macro that is compiled is tracked in this database and identified in
terms of its impact on other functions. When a function changes, VisualAge C++
already knows which other functions, if any, will be affected. There are several
effects of using this system:

• It no longer matters which files contain which functions; since only the
changed functions and the functions they affect will be recompiled, you do not
need to tell the compiler which files are dependent on each other.

• Intermediate object files are not required. If you have told the compiler which
sources to use, and what output you need, it will figure out how to generate
the target (executable, DLL, and so on) without the intermediate files.
However, if for any reason your build process needs an object file, then
VisualAge C++ can also be instructed to generate them.

• All the information required for debugging is already contained in the
codestore, so you never have to set options for generating traditional debug
information with C++ source files.

• Similarly, the codestore eliminates the need to include header files, provide
forward declarations, and prevent inclusion of the same header file more than
once. VisualAge C++ can determine the dependencies between your
declarations and definitions, and it knows the order in which to compile them.

• You do not have to reinvoke the compiler or set any options in order to see
preprocessor output.

• Templates are automatically instantiated, and form part of the codestore. A
temporary directory such as tempinc is not needed.

Subject Makefile Configuration file

Source files What they are. Same.

Source files Which compiler to use. Not necessary for you to specify.

Object files How to compile each source file
into an object file.

Object files do not need to be built.

Linking How to link object files into a DLL
or executable.

Object files do not need to be
linked.
4 Getting to Know VisualAge C++ Version 4.0

1.4 Earlier error reporting

Each time a traditional batch compiler completes the compilation of a target (in a
makefile context), the information about each source file is discarded. When you
rebuild, the entire process is repeated in the same order. Since header files are
normally processed first, you can wait a long time before your own code is
interpreted.

Due to incremental compilation and linking, only the source code you change and
the functions it impacts (if any) are compared to the information saved from the
last build. You do not have to wait for included header files and previously
compiled code to be reprocessed before build errors are found.

1.5 The latest C++ standard

All of the great features in the latest ISO C++ standard are now implemented in
VisualAge C++. This enables you to write portable applications that use features
like namespaces and dynamic casting. Earlier C++ compilers on IBM OS/2, IBM
AIX and Windows NT platforms supported earlier C++ standards and they did not
all support the same standard. This made it difficult to write portable applications.

1.6 Reusable libraries—Standard Template Library and OpenClass

VisualAge C++ now provides the Standard Template Library (STL) as well as
OpenClass.

OpenClass library has grown enormously from previous versions of VisualAge
C++ and now numbers approximately 1000 classes. This allows you to reuse
many more classes to improve your productivity as a C++ programmer. Also
OpenClass library is now highly portable between IBM OS/2, IBM AIX, and
Windows NT platforms, making it easier to develop portable applications.

When choosing a library to use, you should be aware that the two libraries are
incompatible and only one of the two can be used. Also bear in mind your target
platforms. If you are using non-IBM C++ compilers, then do not use OpenClass,
as it is only available for OS/2, AIX, Windows NT, OS/400 and OS/390.

For more information on the Standard Template Library and incompatibilities with
IBM Open Class, read the Migration User’s Guide and Reference for VisualAge
C++ Professional, Version 4.0, which is available at:

www.software.ibm.com/ad/visualage_c++/downloads.htm

1.7 Integrated Development Environment

The IDE provides you with one place to work, within which you can perform the
following and much more:

• Find classes and inspect their members.

• Produce a class hierarchy of all classes or a subset of them.

• Edit your source code.

• Edit your configuration files.
The leap to VisualAge C++ Version 4.0 5

• Build your source code.

• Design your user interfaces.

• Search for text in all files incorporated during the build.

• Find uses of classes and their members.
6 Getting to Know VisualAge C++ Version 4.0

Chapter 2. About the sample project

The concepts discussed in this book will be illustrated by following the
development path for a sample project that reflects a real-life application
development scenario. No source code will be used, as the intent of the book is to
focus on the configuration files and their relationship to makefiles.

Figure 1 shows an overview of the way the project application was built.

Figure 1. Outline of our project

The structure of this small software project can be described as follows:

• Executables spp.exe and schema.exe that use two other external tools named
bison.exe and flex.exe to build themselves. The external tools take non-C++
files as input and generate C++ source files to be compiled as part of spp.exe
and schema.exe.

• A dynamic link library (DLL) named libFramework.dll that initially has no link
dependencies on other components in our project. The executable
schema.exe is used in a similar fashion to the above external tools to take
non-C++ files and generate C++ source files to be compiled as part of
libFramework.dll. Later in this book you will find this DLL split into two libraries
to illustrate a technique to enable greater development efficiency.

• A static library named libUIFwk.lib that has a compile dependency on
libFramework.dll because libUIFwk.lib uses header files from libFramework.dll
in order to build libUIFwk.lib. The static library libUIFwk.lib can also be built as
a DLL, when it will then also have a link dependency on libFramework.dll. The
pros and cons of developing the library either way will be discussed.

• A resource library named rSecMan.dll that has no link dependencies on other
components. It contains Windows resources such as window definitions and
externalized strings.

schema

spp

flex bison

libUIFwk.lib

libUIFwk.dll

rSecMan.dll

run

run
run

run

runrun

libFramework.dll Compile dependency

Compile/link
© Copyright IBM Corp. 2000 7

This book will follow the development of configuration files for several of these
components, and illustrate how the configurations develop at each step to
accommodate dependencies and the need for tools other than the compiler:

• In Chapter 3 we will create a basic configuration to build spp.exe.

• In Chapter 4 we will show how options are added to the build for spp.exe.

• In Chapter 5 we will begin optimizing the configuration.

• In Chapter 6 we will introduce user-defined variables.

• In Chapter 7 we will insert a step to run an external tool to generate additional
source files, which will also be added to the configuration before compilation.
At the end of this chapter, we will have a completed configuration for building
spp.exe.

• In Chapter 8, once the tools are completed, we will build libFramework.dll,
which runs schema during the build. The generated target will be directed to a
different working directory.

• In Chapter 9, we will build the static library libUIFwk.lib.

• In Chapter 10 we will illustrate building the resource DLL rSecMan.dll.

• In Chapter 11, we will have two targets in a configuration, in order to illustrate
conflicts caused by the One-Definition Rule, and how to avoid them.
8 Getting to Know VisualAge C++ Version 4.0

Chapter 3. An introduction to configuration files

The first step in building our sample project is to create the tool spp.exe, which is
needed to produce the source files that will be needed as input for later stages in
development.

3.1 Targets

A configuration file is constructed around the intended outputs, or targets, of your
build. A target can be an executable, a dynamic link library, static library, shared
library, or object file. (In most cases, you will find that you no longer need to
generate object files, but we will go into more detail on this later.) In the
configuration file, the definition of your target looks like this:

target "targetname"
{
}

That is all! To have a target in a configuration file, you must have:

1. The target directive, which consists of the word target plus the name of your
target, in quotation marks.

2. Open and close braces ({ and }), in which you will list your sources.

So, the first step in developing the configuration for building spp.exe is to define
the target, like this:

target "spp.exe"
{
}

3.2 Sources

The open and close braces following the target directive will contain your source
files. Source files can be placed outside the scope of a target directive. However,
if a source file does not appear between the { and } of a target directive, it will not
be linked as part of that target. Source files that appear outside the scope of a
target directive will only be compiled. The best practice is to place your source
files within the scope of the target they belong to.

Here is how the configuration file looks when you add a source file to the project:

target "targetname"
{

source "source_file_name"
}

In other words, you have added the source file to the project by adding a source
directive to the target directive. The source directive consists of the word source
plus your source file name, in quotation marks (one directive can also contain a
list of source file names, separated by commas).

There are nine source files needed to build spp.exe. Three of them,
SppParser.cpp, SppParser.hpp, and SppScanner.cpp, are to be generated by
external tools (that is, they do not exist yet). However, we know that they will be
© Copyright IBM Corp. 2000 9

required as source files. If we insert all of the files into the target directive, the
configuration file now looks like this:

target "spp.exe"
{

source "Tools\schema\CommandParser.cpp"
source "Tools\schema\CommandParser.hpp"
source "Tools\schema\Preprocessor.cpp"
source "Tools\schema\Preprocessor.hpp"
source "iaset.inl"
source "iisetavl.c"
//These three files do not exist yet. We will create them later:
source "SppParser.cpp"
source "SppParser.hpp"
source "SppScanner.cpp"

}

The filenames alone are sufficient if the files are located in one of the directories
listed in the INCLUDE environment variable.

However, when this configuration is built, we will get the following error
messages:

CPPC1919E:The file "SppParser.cpp" is not found.
CPPC1919E:The file "SppParser.hpp" is not found.
CPPC1919E:The file "SppScanner.cpp" is not found.
CPPC1930E:An extension to handle source "iaset.inl" cannot be found.

There will also be other error messages, which we will address in later sections.

The first three messages appear because the files have not been created yet. We
will later add a step to generate these files. For the present, we can prevent this
message by commenting out the source files with C++-style comments.

The fourth message (CPPC1930) means that the compiler does not recognize the
file extension .inl, and does not know how to proceed. To tell the compiler that the
file is C++ code, we have to add a type clause to the directive.

Similarly, although the file iisetavl.c is a C++ file containing template definitions,
the compiler will identify the .c extension as belonging to a C file. If we want the
code to be processed as C++, we have to add the type clause. (Even for C files,
C++ recompilation is much faster after the initial build because the C compiler is
not incremental).

The configuration for building spp.exe now looks like this:

target "spp.exe"
{

source "Tools\schema\CommandParser.cpp",
"Tools\schema\CommandParser.hpp",
"Tools\schema\Preprocessor.cpp",
"Tools\schema\Preprocessor.hpp"

//This is a C++ file, to be inlined:
source type ("cpp") "iaset.inl"
//This is a template C++ file:
source type ("cpp") "iisetavl.c"
//These three files do not exist yet. We will create them later:
//source "SppParser.cpp"
//source "SppParser.hpp"
10 Getting to Know VisualAge C++ Version 4.0

//source "SppScanner.cpp"
}

Multiple source files can be specified with one source directive. That is, we could
also have listed all of the source files of the same type after the word source by
separating the file names with commas.

3.3 If you are migrating

The configuration described above involves both the compiling and linking phases
of building: the target directive indicates that linking is necessary, and this phase
is invoked automatically.

In certain situations, you may not want to invoke the link phase. You can prevent
the link phase from being invoked by commenting out the target. For example:

//target "spp.exe"
{

source "Tools\schema\CommandParser.cpp"
source "Tools\schema\CommandParser.hpp"
//
//other sources, etcetera...
//

}

In this example, the sources will still be compiled, so you can see if there were
any compilation errors and address them before going on to the link phase. This
is advisable when migrating code from projects developed on an older version of
VisualAge C++.

3.4 A different route to compilation

Following is the equivalent part of the makefile that was used for this stage of our
project (we have shown here only the targets and dependencies in the makefile,
for the sake of clearer correspondence to the concepts in this chapter: the full text
is printed later, in Chapter 7, “Running external tools” on page 31.)

This stanza loosely corresponds to the target directve:
.\NT\bin\spp.exe:
.\NT\obj\Tools\Schema\Preprocessor.obj \
.\NT\obj\Tools\Schema\SppParser.obj \
.\NT\obj\Tools\Schema\SppScanner.obj \
.\NT\obj\Tools\Schema\CommandProcessor.obj
@echo Linking .\NT\bin\spp.exe
.
.
.\NT\obj\Tools\Schema\Preprocessor.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Preprocessor.cpp \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/Preprocessor.hpp \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/CommandProcessor.hpp
.
.
.\NT\obj\Tools\Schema\SppParser.obj: \
.\NT\obj\Tools\Schema\SppParser.hpp
.\NT\obj\Tools\Schema\sppParser.cpp
.

An introduction to configuration files 11

.

.\NT\obj\Tools\Schema\SppScanner.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\SppParser.hpp
.\NT\obj\Tools\Schema\SppScanner.cpp
.
.\NT\obj\Tools\Schema\CommandProcessor.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\CommandProcessor.cpp\
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/CommandProcessor.hpp
.
.
cleaning up the build environment:
del /Q /F .\NT\obj\Tools\Schema\Preprocessor.obj
del /Q /F .\NT\obj\Tools\Schema\SppParser.obj
del /Q /F .\NT\obj\Tools\Schema\SppScanner.obj
del /Q /F .\NT\obj\Tools\Schema\CommandProcessor.obj

As you can see, several major differences between the steps used by VisualAge
C++ and those used by the traditional compiler are already apparent:

• Where the configuration file described only the final target (the .exe file), the
makefile describes every stage along the way. Specific instructions for
generating first an object file, then an executable, are needed. See Figure 2
and Figure 3.

Figure 2. Traditional route to producing an executable or library

Figure 3. How VisualAge C++ Version 4.0 produces an executable or library

• Since the traditional compiler creates object files which are no longer needed
after compilation, a cleanup phase has to be executed to delete all the
unwanted files.

C++ Source Code

Object code

Executable or library

C++ Source Code Executable or library
12 Getting to Know VisualAge C++ Version 4.0

3.5 Other useful references

Refer to the online help for the full syntax of the source and target directives, as
well as for the following:

• "Types of Source Files", a list of file extensions recognized by the compiler.

• "C Compilation: Comparing C and C++ Builds", which contains more
information on the difference between processing C source and C++ source.

• "Data Elements in Configuration Files", which has more detailed information
on how strings (for example, file paths) are interpreted in a configuration file.
An introduction to configuration files 13

14 Getting to Know VisualAge C++ Version 4.0

Chapter 4. Adding options

In the previous section, we developed a basic configuration consisting of the
sources and target required to build an executable, spp.exe:

target "spp.exe"
{

source "Tools\schema\CommandParser.cpp"
source "Tools\schema\CommandParser.hpp"
source "Tools\schema\Preprocessor.cpp"
source "Tools\schema\Preprocessor.hpp"
//This is a C++ file, to be inlined:
source type ("cpp") "iaset.inl"
//This is a template C++ file:
source type ("cpp") "iisetavl.c"
//These three files do not exist yet. We will create them later:
//source "SppParser.cpp"
//source "SppParser.hpp"
//source "SppScanner.cpp"

}

In this section, we will add options for linking and for macro processing.

4.1 How options work

An option directive takes a form similar to a source or target directive:

option option_type(option_name,setting)
{
}

For example, the option to determine which version of the runtime is linked is:

link(linkWithSharedLib, yes)

The option directive applies only to the sources that appear between the { and }.
You can include several options in a single directive, separated by commas. The
directive can be nested within other directives. The location of the directive and
its relation to other directives (for example, whether it is nested within another
directive, or whether it encloses another directive) determines the effective scope
of the option.

You do not have to specify "yes" when you write an option. For example, the
option to turn on inlining is:

opt(inline, yes)

However, you could write the same option this way:

opt(inline)

This is true even when the default setting of the option is "no". For example, if you
do not specify the option for run-time type identification, gen(rtti), the default is
gen(rtti,no). However, if you specify gen(rtti), it is evaluated as gen(rtti,yes).
© Copyright IBM Corp. 2000 15

4.2 Applying an option to a limited number of sources

We will add the macros(global) option to the configuration file for spp.exe, but will
make it apply only to certain source files (those containing macros).

target "spp.exe"
{

option macros(global,yes)
{

source "Tools\schema\CommandParser.cpp"
source "Tools\schema\CommandParser.hpp"
source "Tools\schema\Preprocessor.cpp"
source "Tools\schema\Preprocessor.hpp"
//This is a C++ file, to be inlined:
source type ("cpp") "iaset.inl"
//This is a C file, to be processed as C++:
source type ("cpp") "iisetavl.c"
//This file does not exist yet. We will create it later:
//source "SppParser.cpp"

}
// These two files do not exist yet. We will create them later.
//source "SppParser.hpp"
//source "SppScanner.cpp"

}

In this configuration, macros defined in any of the first seven source files will be
visible to all the source files in the project. Macros in the remaining source files,
SppParser.hpp and SppScanner.cpp, will be visible only within those files.

4.3 Options with project-wide scope

Some options must be set to apply to all the source files in the project. To do this,
set the option directive at the outermost scope (do not enclose it in any other
directive). An explanation of the project-wide options follows the configuration
file.

option link(linkWithMultiThreadLib,yes), link(linkWithSharedLib,yes),
incl(searchpath, "."), incl(searchPath, "x:\\src_dir\\5.2\\cmvc\\src"),
define(CICS_W32)
{

target "spp.exe"
{

option macros(global,yes)
{

source "Tools\schema\CommandParser.cpp"
source "Tools\schema\CommandParser.hpp"
source "Tools\schema\Preprocessor.cpp"
source "Tools\schema\Preprocessor.hpp"
//This is a C++ file, to be inlined:
source type ("cpp") "iaset.inl"
//This is a template C++ file:
source type ("cpp") "iisetavl.c"
//This file does not exist yet. We will create it later:
//source "SppParser.cpp"

}
// These two files do not exist yet. We will create them later.
//source "SppParser.hpp"
16 Getting to Know VisualAge C++ Version 4.0

//source "SppScanner.cpp"
}

}

• link(linkWithMultiThreadLib,yes) links the target using the multithread libraries.

• link(linkWithSharedLib,yes) links the target with the shared libraries.

• incl(searchpath, ".") adds the current directory to the default search path.

• define(CICS_W32) defines the user macro CICS_W32.

4.4 Options in a makefile

Here is the makefile that was first shown in Chapter 3, “An introduction to
configuration files” on page 9, with a few additions to show how the options were
set:

.\NT\bin\spp.exe:

.\NT\obj\Tools\Schema\Preprocessor.obj \

.\NT\obj\Tools\Schema\SppParser.obj \

.\NT\obj\Tools\Schema\SppScanner.obj \

.\NT\obj\Tools\Schema\CommandProcessor.obj
@echo Linking .\NT\bin\spp.exe

here is where link options are set:
icc @<< -Q+ -Tdp -Gm+ -Gd+ -Ft- /B"/NOE" /qautoimported \
/Fe.\NT\bin\spp.exe .\NT\obj\Tools\Schema\Preprocessor.obj
.\NT\obj\Tools\Schema\SppParser.obj
.\NT\obj\Tools\Schema\SppScanner.obj
.\NT\obj\Tools\Schema\CommandProcessor.obj
.
.
.\NT\obj\Tools\Schema\Preprocessor.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Preprocessor.cpp \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Build\NT\unistd.h \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/Preprocessor.hpp \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/CommandProcessor.hpp

the compiler is called, and options passed for
Preprocessor.obj:

icc @<< -c -D__WINDOWS__ \
-DCICS_W32 -DFwkCLIENT -Gd+ -Q+ -Ft- -Gm+ /qautoimported \
-Ge+ -Ix:\src_dir\5.2\cmvc\src\Tools\Schema\Build\NT \
-I x:\src_dir\5.2\cmvc\src \
-I x:\src_dir\5.2\cmvc\src\Tools\Schema \
-I.\NT\obj\Tools\Schema\Schema

/Fo.\NT\obj\Tools\Schema\Preprocessor.obj \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Preprocessor.cpp
.
.
.\NT\obj\Tools\Schema\SppParser.obj: \
.\NT\obj\Tools\Schema\SppParser.hpp
.\NT\obj\Tools\Schema\sppParser.cpp
the compiler is called, and options passed for
SppParser.obj:
icc -c -D__WINDOWS__ \
-DCICS_W32 -DFwkCLIENT -Gd+ -Q+ -Ft- -Gm+ /qautoimported \
-Ge+ -Ix:\src_dir\5.2\cmvc\src\Tools\Schema\Build\NT \
-I x:\src_dir\5.2\cmvc\src \
Adding options 17

-I x:\src_dir\5.2\cmvc\src\Tools\Schema \
-I.\NT\obj\Tools\Schema\Schema
-Fo .NT\obj\Tools\Schema\sppParser.obj $(VOY_OBJ_DIR)\sppParser.cpp
.
.
.\NT\obj\Tools\Schema\SppScanner.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\SppParser.hpp
.\NT\obj\Tools\Schema\SppScanner.cpp
icc -c -D__WINDOWS__ \
-DCICS_W32 -DFwkCLIENT -Gd+ -Q+ -Ft- -Gm+ /qautoimported \
-Ge+ -Ix:\src_dir\5.2\cmvc\src\Tools\Schema\Build\NT \
-I x:\src_dir\5.2\cmvc\src \
-I x:\src_dir\5.2\cmvc\src\Tools\Schema \
-I.\NT\obj\Tools\Schema\Schema
-DYY_READ_BUF_SIZE=1 -DYY_BUF_SIZE=16384\ -Fo$(VOY_OBJ_DIR)\SppScanner.obj
.\NT\obj\Tools\Schema\SppScanner.cpp

.\NT\obj\Tools\Schema\CommandProcessor.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\CommandProcessor.cpp\
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/CommandProcessor.hpp
icc @<< -c -D__WINDOWS__ \
-DCICS_W32 -DFwkCLIENT -Gd+ -Q+ -Ft- -Gm+ /qautoimported \
-Ge+ -Ix:\src_dir\5.2\cmvc\src\Tools\Schema\Build\NT \
-I x:\src_dir\5.2\cmvc\src \
-I x:\src_dir\5.2\cmvc\src\Tools\Schema \
-I.\NT\obj\Tools\Schema\Schema
/Fo.\NT\obj\Tools\Schema\CommandProcessor.obj \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\CommandProcessor.cpp
.
.
cleaning up the build environment:
del /Q /F .\NT\obj\Tools\Schema\Preprocessor.obj
del /Q /F .\NT\obj\Tools\Schema\SppParser.obj
del /Q /F .\NT\obj\Tools\Schema\SppScanner.obj
del /Q /F .\NT\obj\Tools\Schema\CommandProcessor.obj

You will notice a few more differences between this file and the equivalent
configuration file listed in 4.3, “Options with project-wide scope” on page 16:

• In the makefile, the call to the compiler is made explicitly, and is repeated for
each object file that must be compiled.

• The options must be repeated with every call to the compiler.

• The makefile uses one- or two-character options, while the configuration file
uses English-like names.
18 Getting to Know VisualAge C++ Version 4.0

4.5 How the makefile options are translated

Table 2 shows how options from the makefile appear in the configuration file.

Table 2. How options from the makefile appear in the configuration file

4.6 Option types

The available option types are:

• gen, or code generation options

• link, or linking options

• lang, or language options

• Miscellaneous options (all others). The miscellaneous options include these
types:

• alloc

• debug

• define/undefine

• include

• info

• macros

• misc

• report

Makefile option Equivalent in configuration file

-DCICS_W32 define(CICS_W32) (defines the user macro
CICS_W32)

-DFwkCLIENT define(FwkCLIENT) (defines the user macro
FwkCLIENT)

-I x:\src_dir\5.2\cmvc\src (defines a path to
only search for #include files)

incl(searchPath,
"x:\\src_dir\\5.2\\cmvc\\src") (defines a path
to search for all source files, not just #include
files)

-Gd+ link(linkWithSharedLib,yes)

-Q+ Not needed : this option suppresses display
of the compiler logo

-Ft- Not needed: this option controls and directs
files for template resolution

-Gm+ link(linkWithMultiThreadLib, yes)

-Ge+ Not needed: this option identifies the output
as an executable, and is replaced by the
target directive
Adding options 19

4.7 Common options you might need

You may find some options are frequently required:

Language options

If you use bool, true, or false in your code, you will have to set the
lang(nokeyword, "bool"), lang(nokeyword, "true"), and lang(nokeyword, "false")
options. This is especially likely if you make use of IBM Open Class.

Link options

link(linkWithMultiThreadLib) and link(linkWithSharedLib), as used in the example
above, are needed if you wish to link with the multithread and shared libraries.

Miscellaneous options

incl(searchpath, "pathname") is needed if you will be using any files located in
directories that are not in the path set by your environment.

define("macroname", value) can be used to define macros without having to
modify sources.

Macro options

We used macros(global, yes) to address compilation errors like the following:

CPPC0274E:The name lookup for "function_name" did not find a declaration.

As a general rule, you will find it is necessary to apply this option to all of your
header files (.h, .hpp, system header files such as iostream, and so on). It may
also be necessary in some cases where you have defined macros or functions in
.cpp files.

4.8 Other useful references

For tables mapping all options from previous versions of VisualAge C++ to the
new options, see the following pages under Build References in the online help:

• Compile Options from Earlier Versions of VisualAge C++ (OS/2, Windows)

• Link Options from Earlier Versions of VisualAge C++ (OS/2, Windows)

• Compile Options from Earlier Versions of VisualAge C++ (AIX) (this includes
both compile options and link options)
20 Getting to Know VisualAge C++ Version 4.0

Chapter 5. Promoting included files to the configuration file

In the previous two chapters, we created a basic configuration file consisting of a
single target and several source files. We then applied options to some of the
source files to make macros visible, and to resolve compilation errors where
function or macro declarations could not be found.

Before we go on to further develop this configuration however, we will begin to
optimize it.

5.1 Why optimize so early?

It may seem premature to begin optimizing at this stage: we have very few source
files, and the project seems very simple. However, the greatest improvements in
build time over the course of the entire project will come from optimizing early,
and optimizing continously as you add more source files.

5.2 First steps in optimizing

The most important change you can make to optimize your configuration is to
promote included source files. This means that you will find sources that are
currently included by other sources, but not listed in the configuration, and make
them a part of the configuration directly. Sources that are listed with a source
directive are called primary sources. Included sources are called secondary
sources.

When you launch a rebuild, and the compiler finds a source that is listed in the
configuration, it will process it only once. If no changes are found, it will not have
to be recompiled at all. When a file name is not found in the configuration file,
however, it will be processed every time it is found in any other source.

There are other things you can do to optimize your configuration, but we will start
with this step as it has the greatest impact on the efficiency of your builds.

5.3 What to promote?

To use the most typical example of files that are good candidates for promotion,
here are the first few lines of the file SppParser.cpp:

#include <stdio.h>
#include <istring.hpp>
#include <iostream.h>
#define YYDEBUG 1
#define YYSTYPE IString
//...etcetera...

We will promote the three header files to the configuration as follows:

option link(linkWithMultiThreadLib,yes), link(linkWithSharedLib,yes),
incl(searchpath, "."), incl(searchPath, "x:\\src_dir\\5.2\\cmvc\\src"),
define(CICS_W32)
{

target "spp.exe"
{

© Copyright IBM Corp. 2000 21

option macros(global,yes)
{

//here are the three new primary sources:
source "stdio.h"
source "istring.hpp"
source "iostream.h"
source "Tools\schema\CommandParser.cpp"
source "Tools\schema\CommandParser.hpp"
source "Tools\schema\Preprocessor.cpp"
source "Tools\schema\Preprocessor.hpp"
//This is a C++ file, to be inlined:
source type ("cpp") "iaset.inl"
//This is a template C++ file:
source type ("cpp") "iisetavl.c"
//This file does not exist yet. We will create it later:
//source "SppParser.cpp"

}
// These two files do not exist yet. We will create them later.
//source "SppParser.hpp"
//source "SppScanner.cpp"

}
}

The files were added within the macros(global) option because they are header
files, and contain declarations and definitions that must be visible to many files.

5.4 Is that all?

No. There are other things you can do to optimize your configuration file. You
should also:

• Properly identify sources that should have the macros(global) option applied
to them, as early as possible.

• Group source files for manageability and readability. This is explained in
Chapter 12.6, “Organizing libFramework.icc by grouping options” on page 65.

• Group options, in cases where the same options are used in several parts of a
project. This is demonstrated in Chapter 12.6, “Organizing libFramework.icc
by grouping options” on page 65. It is also useful in cases where you have sets
of options that may change depending on conditions such as the target
operating system. An example of using option groups this way is provided in
6.4, “Variables make conditional processing easier” on page 27.

5.5 If you are migrating

In our example, we promoted three header files to the configuration at once.
When you are migrating a project from an earlier version of VisualAge C++, it may
be wiser to start by promoting one source or header file at a time. Start with the
source or header file that has the most include directives; build; and keep
rebuilding as you add additional sources.
22 Getting to Know VisualAge C++ Version 4.0

5.6 Other useful references

For more details on how to optimize your configuration, read the Migration Guide,
available in PDF form, at the following Web site:

http://www.software.ibm.com/ad/visualage_c++/downloads.html
Promoting included files to the configuration file 23

24 Getting to Know VisualAge C++ Version 4.0

Chapter 6. Variables

In Chapter 4, “Adding options”, a basic configuration file was developed,
containing a target, options, and sources. In real life, for most makefiles, you will
probably find that you need more than these to make your configuration file
readable and easy to follow and maintain. Often, you need to set variables of
your own to do simple things like replace long pathnames, or modify environment
variables. This chapter will describe how to do that.

6.1 User-defined variables in configuration files

Variables in configuration files work in the same way variables in makefiles do:
they act as a replacement for a string of text.

For example, if the source files we wanted to use were not located in the current
working directory, we could use variables to represent the paths. Here is how the
example from the previous chapter would look if we had to fully qualify the source
and target locations, and wanted to keep the output of the build in a separate
directory from the source:

option link(linkWithMultiThreadLib,yes), link(linkWithSharedLib,yes),
incl(searchpath, "."), incl(searchPath, "x:\\src_dir\\5.2\\cmvc\\src"),
define(CICS_W32)
{

target "C:\project\working\code\output\spp.exe"
{

option macros(global,yes)
{

source "stdio.h"
source "istring.hpp"
source "iostream.h"
source "Tools\schema\CommandParser.cpp"
source "Tools\schema\CommandParser.hpp"
source "Tools\schema\Preprocessor.cpp"
source "Tools\schema\Preprocessor.hpp"
source type ("cpp") "iaset.inl"
source type ("cpp") "iisetavl.c"
//This file does not exist yet. We will create it later:
//source "C:\project\working\code\src\SppParser.cpp"

}
//These two files do not exist yet. We will create them later:
//source "C:\project\working\code\src\SppParser.hpp"
//source "C:\project\working\code\src\SppScanner.cpp"

}
}

While this is adequately readable in this small example, this arrangement would
quickly become cumbersome if applied to a project with 100 or more files, and
would become difficult to maintain as working directories change (for example, if
you use the same configuration to build the project on different platforms or
machines, and need to specify new working directories).
© Copyright IBM Corp. 2000 25

We will simplify this by defining three simple variables: SRC_DIR, OUTPUT_DIR
and TOOLS, described in Table 3.

Table 3. Assigning a value to three variables used for directory paths

The syntax for defining a variable name uses the ’=’ assignment directive as
shown in the configuration file in 6.3, “Example of a configuration file using
variables” on page 26.

6.2 Rules for using variables

• While compilation of your source files in a VisualAge C++ project is
incremental and your declarations do not have to be ordered, the directives
and variables in a configuration file are interpreted in the order that they
appear. For this reason, you must define variables before you use them.

• To call environment variables that you have set outside the configuration file,
prefix the variable name with a ’$’, for example:

$INCLUDE

• Variables can define strings or values.

• To define an empty string, use null, for example:

test_string=""

6.3 Example of a configuration file using variables

When the paths are replaced with variable names, our example now looks like
this:

SRC_DIR=’c:\project\working\code\src\’
OUTPUT_DIR=’c:\project\working\code\output\’
TOOLS="Tools\\schema\\"

option link(linkWithMultiThreadLib,yes), link(linkWithSharedLib,yes),
incl(searchpath, "."), define(CICS_W32)
{

target OUTPUT_DIR "spp.exe"
{

option macros(global,yes)
{

source "stdio.h"
source "istring.hpp"
source "iostream.h"
source TOOLS "CommandParser.cpp"
source TOOLS "CommandParser.hpp"
source TOOLS "Preprocessor.cpp"
source TOOLS "Preprocessor.hpp"
source type ("cpp") "iaset.inl"
source type ("cpp") "iisetavl.c"

Variable name Variable value

SRC_DIR c:\project\working\code\src\

OUTPUT_DIR c:\project\working\code\output\

TOOLS Tools\Schema\
26 Getting to Know VisualAge C++ Version 4.0

//This file does not exist yet. We will create it later:
//source SRC_DIR "SppParser.cpp"

}
//These two files do not exist yet. We will create them later:
//source SRC_DIR "SppParser.hpp"
//source SRC_DIR "SppScanner.cpp"

}
}

You will notice that the first two variables SRC_DIR and OUTPUT_DIR use a
single quotation mark to enclose the string value whereas the last variable
TOOLS uses a double quotation mark. The difference is that the single quotation
mark treats the enclosed characters as literals, whereas the double quotation
mark will interpret the enclosed characters according to C/C++ programming
rules. For example, the backslash character will be treated as an escape
character.

6.4 Variables make conditional processing easier

Another example of using variables in a configuration file can be found in the
sample project dllexp, in the comp\samples subdirectory of the main installation
directory for VisualAge C++.

This sample uses variables to set up conditional processing for using the same
configuration on different platforms, and uses some of the builtin VisualAge C++
macros to do so. It also demonstrates using grouped options.

The contents of the configuration file are as follows:

if $__TOS_AIX__
{
TARG = "dllexp"
LIB = "share.a"
}

else
{
TARG = "dllexp.exe"
LIB = "share.lib"
}

if $__TOS_OS2__ | $__TOS_WIN__
option AdditionalOptions = link(extdictionary, no)

if $__TOS_AIX__
option AdditionalOptions = link(libPathOut,

"/usr/vacpp/samples/comp/dllexp:/usr/vacpp/lib:/usr/lib:/lib")

option
AdditionalOptions,
link(debug, no),
link(linkwithmultithreadlib, yes),
link(linkwithsharedlib, yes),
link(padding, no),
gen(rtti, yes)

{
target TARG
{

option macros(global)
Variables 27

{
source type(cpp) "share.h"

}
source "dllexp.cpp"
source LIB

}
}

6.5 Variables in a makefile

Makefiles use variables in much the same way, so there is not much difference
between the variables used in this makefile and those used in the configuration
file, except that the ’$’ is not needed to call variables set within the configuration
file:

variables are set for the compiler, linker, common options,
and a pathname:
GCPPC=icc
GLINK=icc
FLAGS=-D__WINDOWS__ \
-DCICS_W32 -D_Export= -DFwkCLIENT -Gd+ -Q+ -Ft- -Gm+ /qautoimported \
-Ge+ -Ix:\src_dir\5.2\cmvc\src\Tools\Schema\Build\NT \
-I x:\src_dir\5.2\cmvc\src \
-I x:\src_dir\5.2\cmvc\src\Tools\Schema \
-I.\NT\obj\Tools\Schema\Schema
OBJ_DIR=.\NT\Tools\Schema
ERASE=del /Q /F
.
.\NT\bin\spp.exe:
$(OBJ_DIR)\Preprocessor.obj \
$(OBJ_DIR)\SppParser.obj \
$(OBJ_DIR)\SppScanner.obj \
$(OBJ_DIR)\CommandProcessor.obj
@echo Linking .\NT\bin\spp.exe
here is where link options are set:
$(GLINK) @<< -Q+ -Tdp -Gm+ -Gd+ -Ft- /B"/NOE" /qautoimported \
/Fe.\NT\bin\spp.exe $(OBJ_DIR)\Preprocessor.obj
$(OBJ_DIR)\SppParser.obj
$(OBJ_DIR)\SppScanner.obj
$(OBJ_DIR)\CommandProcessor.obj
.
.
$(OBJ_DIR)\Preprocessor.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Preprocessor.cpp \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Build\NT\unistd.h \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/Preprocessor.hpp \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/CommandProcessor.hpp

icc @<< -c $(FLAGS)
/Fo.$(OBJ_DIR)\Preprocessor.obj \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Preprocessor.cpp
.
.
$(OBJ_DIR)\SppParser.obj: \
$(OBJ_DIR)\SppParser.hpp
$(OBJ_DIR)\sppParser.cpp
28 Getting to Know VisualAge C++ Version 4.0

icc -c $(FLAGS) -Fo $(OBJ_DIR)\sppParser.obj $(OBJ_DIR)\sppParser.cpp
.
.
$(OBJ_DIR)\SppScanner.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\SppParser.hpp
$(OBJ_DIR)\SppScanner.cpp
icc -c $(FLAGS) -DYY_READ_BUF_SIZE=1 -DYY_BUF_SIZE=16384\ -Fo
$(OBJ_DIR)\SppScanner.obj $(OBJ_DIR)\SppScanner.cpp

$(OBJ_DIR)\CommandProcessor.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\CommandProcessor.cpp\
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/CommandProcessor.hpp
icc @<< -c $(FLAGS) /Fo $(OBJ_DIR)\CommandProcessor.obj \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\CommandProcessor.cpp
.
.
$(ERASE) .\NT\obj\Tools\Schema\Preprocessor.obj
$(ERASE) .\NT\obj\Tools\Schema\SppParser.obj
$(ERASE) .\NT\obj\Tools\Schema\SppScanner.obj
$(ERASE) .\NT\obj\Tools\Schema\CommandProcessor.obj

6.6 Other useful references

VisualAge C++ predefines certain environment variables and macros to describe
operating systems and product level, which can be used to set up conditional
processing, for example:

• __TOS_AIX__ (’TOS’ stands for "target operating system")

• __TOS_WIN__

• __TOS_OS2__

• __IBMCPP__ (by default, this is set to __IBMCPP__=400, to represent
Version 4.0)

• __ICC_DIR__ (the path of the current configuration file—.icc file)

These and others are described in the pages "Predefined Build Environment
Variables" and "VisualAge C++ Predefined Macro Names", in the online help.
Variables 29

30 Getting to Know VisualAge C++ Version 4.0

Chapter 7. Running external tools

In the previous chapters, we created a configuration to build a target, spp.exe.
However, some of the source files that are needed must be generated with
external tools. In this chapter we will add directives to the configuration to start
these tools.

7.1 The run directive

To launch any processes external to the compiler, use a run directive. The run
directive takes the following form:

run [before|after|cleanup] [sources (source_file_list)] [targets
(target_file_list)] commands

• The flags before, after, and cleanup are optional. You only need to use these
if you want to ensure that the process being launched is started at a specific
stage in compilation ("before" is run before compilation; "after" is run after
compiling and linking; "cleanup" is run only when you select "Clean" from the
Project Workbook menu to delete the codestore and clean up the build
environment).

• The sources and targets parameters are also optional. These are not passed
to the external tool itself. They are used by the incremental compiler to
determine dependencies between multiple run directives and to check
whether the run directive needs to be repeated on every rebuild.

• The commands are those commands you need to be executed by the
external command line interpreter. The commands can include executing DOS
commands like del and copy, or they can be external tools with options passed
to the tools. The commands must be enclosed in quotation marks. You can
issue a series of commands to be processed in a sequence by enclosing each
command in quotation marks and separating the commands with commas.

7.2 Running tools before compiling and linking

In this example, we need to run two tools, called bison and flex, with different sets
of options, to take source files of types .y and .l, and process them into .cpp and
.hpp files to build spp.exe.

Since it is imperative that these processes be completed before the compiler
starts to look for the source files for spp.exe, we will use the before flag. We will
also specify sources and targets:

run before sources ("Tools/Schema/SppParser.y") targets "("SppParser.cpp",
"SppParser.hpp")

"bison -d -l -t -bSppParser Tools/Schema/SppaParser.y",
"copy SppParser.tab.c SppParser.cpp",
"copy SppParser.tab.h SppParser.hpp"
"del SppParser.tab.c"
"del SppParser.tab.h"

run before sources ("Tools/Schema/SppScanner.l") targets ("SppScanner.cpp")

"flex -t Tools/Schema/SppScanner.l > SppScanner.cpp"
© Copyright IBM Corp. 2000 31

The following rules apply to the run directive:

• You can have several run directives in sequence. Run directives are executed
according to the order of the dependencies between them, which are
determined by the parameters of the sources and targets flags.

• Command strings are executed in the order they appear.

• The command strings will continue to be read in until the next configuration file
directive is encountered. You can issue as many commands as you need to.

• If the source files for the external tool are not located in the project working
directory (usually the same directory as your configuration file), you must
qualify the file paths.

• You can list as many sources as you need to, but they must appear within the
(and) of a single sources parameter. You cannot repeat the source parameter
in the same way that you can repeat the source directive.

While the directive can appear almost anywhere in the configuration file, we have
enclosed it in the target directive so that there will be no confusion for future
users of our configuration file regarding which part of the project this tool stage is
associated with.

This is how the configuration file for building spp.exe looks now (note that we
have removed the comments (//) from the three source files that previously could
not be found):

option link(linkWithMultiThreadLib,yes), link(linkWithSharedLib,yes),
incl(searchpath, "."), incl(searchPath, "x:\\src_dir\\5.2\\cmvc\\src"),
define(CICS_W32)
{

target "spp.exe"
{

run before
sources ("Tools/Schema/SppParser.y")
targets ("SppParser.cpp",SppParser.hpp")

"bison -d -l -t -bSppParser Tools/Schema/SppaParser.y",
"copy SppParser.tab.c SppParser.cpp",
"copy SppParser.tab.h SppParser.hpp"
"del SppParser.tab.c"
"del SppParser.tab.h"

run before
sources ("Tools/Schema/SppScanner.l")
targets ("SppScanner.cpp")

"flex -t Tools/Schema/SppScanner.l > SppScanner.cpp"

option macros(global,yes)
{

source type(’cpp’) ’stdio.h’
source ’istring.hpp’
source type(’cpp’) ’iostream.h’
source "Tools\schema\CommandParser.cpp"
source "Tools\schema\CommandParser.hpp"
source "Tools\schema\Preprocessor.cpp"
source "Tools\schema\Preprocessor.hpp"
source type(’cpp’) ’iisetavl.c’
32 Getting to Know VisualAge C++ Version 4.0

source type(’cpp’) ’iset.inl’
source type(’cpp’) ’iset.h’
source ’SppParser.cpp’

}
source ’SppParser.hpp’
source ’SppScanner.cpp’

}
}

In this file, our decision to place the run directive within the scope—inside the {
and }—of the target directive was based purely on our organizational style: we
wanted to be able to easily determine in the future, which target this step was
needed for. As the project grows, if the run directive is placed at the top of the
configuration file, it may not be as easy to figure out where in the process the
external tool was needed, especially if there is eventually more than one target in
the same configuration.

Although the directive would still be processed correctly if placed outside the
target directive, we recommend that you place run directives belonging to a
specific target inside that target.

7.3 Tool commands in a makefile

Here is the makefile equivalent to the configuration file we have developed so far.
Changes made since the last chapter are marked with comments (#):

GCPPC=icc
GLINK=icc
FLAGS=-D__WINDOWS__ \
-DCICS_W32 -D_Export= -DFwkCLIENT -Gd+ -Q+ -Ft- -Gm+ /qautoimported \
-Ge+ -Ix:\src_dir\5.2\cmvc\src\Tools\Schema\Build\NT \
-I x:\src_dir\5.2\cmvc\src \
-I x:\src_dir\5.2\cmvc\src\Tools\Schema \
-I.\NT\obj\Tools\Schema\Schema
OBJ_DIR=.\NT\Tools\Schema
ERASE=del /Q /F
.
.\NT\bin\spp.exe:
$(OBJ_DIR)\Preprocessor.obj \
$(OBJ_DIR)\SppParser.obj \
$(OBJ_DIR)\SppScanner.obj \
$(OBJ_DIR)\CommandProcessor.obj
@echo Linking .\NT\bin\spp.exe
$(GLINK) @<< -Q+ -Tdp -Gm+ -Gd+ -Ft- /B"/NOE" /qautoimported \
/Fe.\NT\bin\spp.exe $(OBJ_DIR)\Preprocessor.obj
$(OBJ_DIR)\SppParser.obj
$(OBJ_DIR)\SppScanner.obj
$(OBJ_DIR)\CommandProcessor.obj
.
.
$(OBJ_DIR)\Preprocessor.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Preprocessor.cpp \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Build\NT\unistd.h \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/Preprocessor.hpp \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/CommandProcessor.hpp
icc @<< -c $(FLAGS)
/Fo.$(OBJ_DIR)\Preprocessor.obj \
Running external tools 33

H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\Preprocessor.cpp
.
.
$(OBJ_DIR)\SppParser.obj:\
this file is required as input to the ’bison’ tool, in order
to produce the C++ files:
x:\src_dir\5.2\cmvc\src\Tools\Schema\SppParser.y
these are the commands to run bison and create .cpp and .hpp files:
bison -d -l -t -b SppParser Tools/Schema/SppaParser.y
copy SppParser.tab.c SppParser.cpp
copy SppParser.tab.h SppParser.hpp
del SppParser.tab.c
del SppParser.tab.h

$(OBJ_DIR)\SppParser.hpp
$(OBJ_DIR)\sppParser.cpp

icc -c $(FLAGS) -Fo $(OBJ_DIR)\sppParser.obj $(OBJ_DIR)\sppParser.cpp
.
.
$(OBJ_DIR)\SppScanner.obj: \
this file is required as input to the ’flex’ tool, to create
SppScanner.cpp:
x:\src_dir\5.2\cmvc\src\Tools\Schema\SppScanner.l
these are the commands to run flex and generate SppScanner.cpp:
flex -t Tools/Schema/SppScanner.l > $(OBJ_DIR)SppScanner.cpp

H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\SppParser.hpp
$(OBJ_DIR)\SppScanner.cpp
icc -c $(FLAGS) -DYY_READ_BUF_SIZE=1 -DYY_BUF_SIZE=16384\ -Fo
$(OBJ_DIR)\SppScanner.obj $(OBJ_DIR)\SppScanner.cpp

$(OBJ_DIR)\CommandProcessor.obj: \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\CommandProcessor.cpp\
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools/Schema/CommandProcessor.hpp
icc @<< -c $(FLAGS) /Fo $(OBJ_DIR)\CommandProcessor.obj \
H:\common\ActiveOrder\fwk3.5\3.5.2\cmvc\src\Tools\Schema\CommandProcessor.cpp
.
.
$(ERASE) .\NT\obj\Tools\Schema\Preprocessor.obj
$(ERASE) .\NT\obj\Tools\Schema\SppParser.obj
$(ERASE) .\NT\obj\Tools\Schema\SppScanner.obj
$(ERASE) .\NT\obj\Tools\Schema\CommandProcessor.obj

7.4 Other useful references

For the complete syntax of the run directive, see the online help page "Run
Configuration File Directive".

See "Run Command Line Programs During Builds" in the online help for more
information on launching tools other than the compiler in your build.
34 Getting to Know VisualAge C++ Version 4.0

Chapter 8. Building a shared (dynamic link) library

In this chapter we take a look at building a shared library on AIX named
libFramework.so or the equivalent Dynamic Link Library (DLL) on Windows NT
named libFramework.dll. Shared libraries contain compiled source code which
can be indirectly linked (referenced) to other shared libraries or executables.
Building a shared library involves compiling and linking.

This chapter uses the terms shared library and DLL interchangeably to address
both AIX and Intel platforms.

8.1 Advantages of shared libraries

There are several performance advantages of building reusable source code into
a shared library:

• The source code is only compiled and linked once.

• Run-time memory consumption is reduced, as the source code is linked into
only one library.

• Disk storage use is reduced, as the source code is compiled and linked into
only one library.

The impact of these advantages is even greater if the DLL is referenced by many
other DLLs or executables.

In addition, using DLLs can make it easier for a developer to work within a project
team. Partitioning a few large libraries or executables into many small libraries
assists project team development. Developers can work independently of each
other by working on different small libraries. When the interfaces between the
libraries need to be worked on and tested, then integration can be performed.

8.2 Configuration files simplify building dynamic link libraries

Here we focus on showing you how configuration files simplify the following
aspects of building a DLL:

• There is no need to use a compiler switch to indicate that the source code is
being compiled into a DLL versus an executable.

• There is no need to know how to produce import libraries for Intel platforms.

• There is no need to invoke the linker as a separate process.

• There is no need to invoke tools to export all symbols.

Where a typical batch compiler requires you to know how to manipulate the tools
to get the right switches and sequence of tool invocations, VisualAge C++ only
requires you to know what you want to perform, which is to build a DLL.

8.3 Linking against other dynamic link libraries

In 3.2, “Sources” on page 9, you learned to compile source code by using the
source directive in a configuration file. Similarly, to link against another library,
© Copyright IBM Corp. 2000 35

you use the source directive, and name the library you want to link against as the
source file. It is as simple as that.

8.4 About the example

The example shows how one configuration file can be used to build either a
shared library on AIX or a DLL on Windows NT.

Before any source of libFramework.dll can be compiled, the schema tool needs to
be invoked with certain .s files as input. To accomplish this in the configuration
file, the run directive is used to specify:

• When the schema tool is to be run (before the compilation process).

• Which .s file will be input (source) to the schema tool.

• The outputs (targets) created by the schema tool that are used as input to the
compilation process. These are .cpp and .hpp files containing C++ source
code.

This configuration also makes use of user-defined variables to replace
pathnames, and two named option groups, ProjectOptions and PlatformOptions.
The link(libSearchPath, path) option specifies a directory where library files can
be found. This will allow the linker to find the two import libraries on an Intel
platform.

8.5 The libFramework.icc configuration file

An excerpt from the libFramework.icc configuration file below shows you how you
can build a DLL, link against other libraries and run an external tool. It shows two
import libraries, cclicw32.lib and cclcpw32.lib, which are linked to
libFramework.dll.

//
// This option group is used to set options that must have project-
// wide scope:
//
option ProjectOptions = gen(rtti, "all")
{

//
// These variables replace filepaths for certain sources,
// and make future maintenance easier (the path will only have
// to be changed in one location):
//

if $__TOS_AIX__
{

DIRSEP = "/"
PLATFORM = "AIX"
BASE_DIR = "/home/common/ActiveOrder/fwk3.5/3.5.2"
TARGET = "libFramework.so"
LIBFWKCORE = "libFwkCore.so"
LIBCICS = "libcicsicc.a"
option PlatformOptions = define("FwkSERVER"),

link(libSearchPath, "/usr/lpp/cics/lib")
}
else
36 Getting to Know VisualAge C++ Version 4.0

{
DIRSEP = "\\"
PLATFORM = "NT"
BASE_DIR = "h:\\common\\ActiveOrder\\fwk3.5\\3.5.2"
TARGET = "libFramework.dll"
LIBFWKCORE = "libFwkCore.lib"
LIBCICS = "cclicw32.lib, cclcpw32.lib"
option PlatformOptions = define("FwkCLIENT"),

define("_X86_"), define("CICS_W32"),
link(subsystem, "windows", 4, 0),
link(libSearchPath, "c:\\cicscli\\lib")

}
SRC_DIR = BASE_DIR DIRSEP "cmvc" DIRSEP "src"
GEN_DIR = BASE_DIR DIRSEP "gen"
OBJ_DIR = GEN_DIR DIRSEP PLATFORM DIRSEP "obj_dbg"
SCHEMA_BIN = SRC_DIR DIRSEP "schema"
SCHEMAGEN_DIR = OBJ_DIR DIRSEP "ProdSoft" DIRSEP "Framework"

DIRSEP "Schema"

option link(linkwithmultithreadlib), link(linkwithsharedlib),
lang(nokeyword, "bool"), lang(nokeyword, "true"),
lang(nokeyword, "false"), define("IC_LANG_BOOL", 0),
define("IVB_IMPORT", "_Import"), link(exportAll, yes),
incl(searchpath, "."),
incl(searchpath, OBJ_DIR "/ProdSoft/Framework/Schema"),
PlatformOptions

{
target TARGET
{

source
LIBCICS, LIBFWKCORE

run before
sources("ProdSoft/Framework/Model/FwkMdlMapAttribute.s")
targets("FwkMdlMapAttribute.cpp","FwkMdlMapAttribute.hpp",

"FwkMdlMapAttributeAttrib.cpp",
"FwkMdlMapAttributeAttrib.hpp")

SCHEMA_BIN " -o" SCHEMAGEN_DIR " -s "
SRC_DIR DIRSEP "ProdSoft" DIRSEP "Framework"
DIRSEP "Model" DIRSEP "FwkMdlMapAttribute.s"

//
// Source directives.
//
option macros('global', 'yes')
{

source "FwkMdlMapAttributeAttrib.hpp"
}
source "FwkMdlMapAttribute.cpp","FwkMdlMapAttribute.hpp",

"FwkMdlMapAttributeAttrib.cpp"}
}

}
}

Some options you may not have seen before appear in this file:

• define("_X86_") states that the build will occur on an Intel x86 system. Do not
use this option if you are building on AIX.

• $__TOS_AIX__ states the target operating system you are building for is AIX.
Building a shared (dynamic link) library 37

• link(subsystem, windows,4,0) identifies the subsystem and the minimum
required level of the operating system. This option is only needed if you are
developing an application for use with Windows.

8.6 How do external tools fit into the incremental build process?

The first time this configuration is built, the tools called in the run before directive
will be launched, compilation will begin when the tools’ targets are completed,
and a codestore will be created.

On subsequent (incremental) builds, the run before directive will only be carried
out if the timestamps of the sources show that they have been changed since the
previous build. If they have not changed, the step to run the external tools will be
skipped.
38 Getting to Know VisualAge C++ Version 4.0

Chapter 9. Building an archive (static library)

In this chapter we take a look at building an archive named libUIFwk.a on AIX or
a static library named libUIFwk.lib on Windows NT. Static libraries contain
compiled source code which can be later linked (copied) into one or more
Dynamic Link Libraries (DLL) or executables. Building a static library involves the
compilation process but does not involve linking, because the compiled source
code is to be later linked into a DLL or executable.

9.1 Static linking versus dynamic linking

The interesting point to observe with building libUIFwk.lib is the amount of
memory that is consumed by VisualAge C++ in the compilation process:
approximately 380Mb, in the case of our code, which is an excessive amount of
memory. The source code in this library happens to be both compilable and
linkable. Hence, building it into a DLL reduces the amount of memory used to
approximately 80Mb, almost a five-fold reduction.

As much as possible, avoid building static libraries (unless they are small) and
instead build the source code into its final target, a DLL or an executable.

9.2 Configuration for building a static library

What follows is the configuration file for building libUIFwk.lib. You will notice the
absence of link(...) options, since the building of static libraries does not involve a
link phase.

option UIFwkProjectOptions = gen(rtti, yes)
{

if $__TOS_AIX__
{

DIRSEP = "/"
PLATFORM = "AIX"
BASE_DIR = "/home/common/ActiveOrder/fwk3.5/3.5.2"
TARGET = "libUIFwk.a"
option PlatformOptions = define("FwkSERVER")

}
else
{

DIRSEP = "\\"
PLATFORM = "NT"
BASE_DIR = "h:\\common\\ActiveOrder\\fwk3.5\\3.5.2"
TARGET = "libUIFwk.lib"
option PlatformOptions = define("FwkCLIENT"),

define("_X86_"), link(subsystem, "windows", 4, 0)
}
SRC_DIR = BASE_DIR DIRSEP "cmvc" DIRSEP "src"
GEN_DIR = BASE_DIR DIRSEP "gen"
OBJ_DIR = GEN_DIR DIRSEP PLATFORM DIRSEP "obj_dbg"

option
incl(searchpath, "."), lang(nokeyword, "bool"),
lang(nokeyword, "true"), lang(nokeyword, "false"),
define("IC_LANG_BOOL", 0), define("IVB_IMPORT", "_Import"),
© Copyright IBM Corp. 2000 39

incl(searchpath,
SRC_DIR "/BeckerMohnberg/" PLATFORM "/Chart/include"),

incl(searchpath, OBJ_DIR "/ProdSoft/Framework/Schema"),
PlatformOptions

{
target TARGET
{

//
// source directive and list of source to compile goes
// here.
//

}
}

}

The gen(rtti) option sets run-time type information. The gen(rtti,yes) setting
generates code that supports both the typeid and dynamic_cast operators.

9.3 Changing libUIFwk.icc to build a DLL

To now build libUIFwk.lib as a DLL simply involves:

• Changing the target extension from .lib to .dll.

• Adding the required link(...) options.

• Specifying the other libraries to link to.

The configuration file to accomplish this is shown below.

option UIFwkProjectOptions = gen(rtti, yes)
{

if $__TOS_AIX__
{

DIRSEP = "/"
PLATFORM = "AIX"
BASE_DIR = "/home/common/ActiveOrder/fwk3.5/3.5.2"
TARGET = "libUIFwk.so"
option PlatformOptions = define("FwkSERVER")
LIBFWK = "libFramework.so"
LIBOTHER = "bchart.a"

}
else
{

DIRSEP = "\\"
PLATFORM = "NT"
BASE_DIR = "h:\\common\\ActiveOrder\\fwk3.5\\3.5.2"
TARGET = "libUIFwk.dll"
option PlatformOptions = define("FwkCLIENT"),

define("_X86_"), link(subsystem, "windows", 4, 0)
LIBFWK = "libFramework.lib"
LIBOTHER = "bchart.lib", "user32.lib", "gdi32.lib",

"comctl32.lib"
}
SRC_DIR = BASE_DIR DIRSEP "cmvc" DIRSEP "src"
GEN_DIR = BASE_DIR DIRSEP "gen"
OBJ_DIR = GEN_DIR DIRSEP PLATFORM DIRSEP "obj_dbg"
SCHEMA_BIN = SRC_DIR DIRSEP "schema"
SCHEMAGEN_DIR = OBJ_DIR DIRSEP "ProdSoft" DIRSEP "Framework"
40 Getting to Know VisualAge C++ Version 4.0

DIRSEP "Schema"

option link(linkwithmultithreadlib), link(linkwithsharedlib),
incl(searchpath, "."), lang(nokeyword, "bool"),
lang(nokeyword, "true"), lang(nokeyword, "false"),
define("IC_LANG_BOOL", 0), define("IVB_IMPORT", "_Import"),
incl(searchpath,

SRC_DIR "/BeckerMohnberg/" PLATFORM "/Chart/include"),
incl(searchpath, OBJ_DIR "/ProdSoft/Framework/Schema"),
link(libSearchPath,

SRC_DIR "/BeckerMohnberg/" PLATFORM "/Chart/lib"),
link(exportAll, yes), PlatformOptions

{
target TARGET
{
//
// source directive and list of source to compile goes
// here.
//
// These are the external libraries:
source LIBFWK, LIBOTHER
}

}
}

To link with the library bchart.lib, we use the link(libSearchPath, path) option, as
bchart.lib is not in the current directory, nor in any directory specified in the LIB
environment variable.
Building an archive (static library) 41

42 Getting to Know VisualAge C++ Version 4.0

Chapter 10. Building a resource library

In this chapter we take a look at how you can build a resource library that can
contain various resource types such as strings, icons, bitmaps, and menu
definitions. We compare a configuration and makefile to show you the difference
between building with VisualAge C++ Version 4.0 and older batch compiler
technology.

10.1 About the example

The configuration file rSecMan.icc is an example of building resources into a
Dynamic Link Library (DLL).

The source files used to build this DLL are of the file extension .rc, which is
recognized by VisualAge C++ as a resource source file. An option directive is
used to create a named group of options for the resource compiler (IRC).

In this example configuration you will notice:

• A variable is created to replace a long path name.

• There is no explicit call to the resource compiler. Since the C++ compiler
recognizes the .rc extension, the resource compiler will be launched in the
background.

The equivalent makefile that was previously used to compile the same source is
included following this example.

10.2 Configuration file for a resource DLL

The content of the rSecMan.icc file follows:

option incl(searchpath, ".")
{

target "rSecMan.dll"
{

option res_rc_options("-i ProdSoft\\IOCUI\\Resources\\include")
{
ENGLISH_SUBDIR = "ProdSoft\\IOCUI\\Resources\\NT\\LOCALE\\EN_NZ"
source
ENGLISH_SUBDIR "\\SecurityProfileInfo.rc",
ENGLISH_SUBDIR "\\SecurityProfileSetPassword.rc",
ENGLISH_SUBDIR "\\MaintainSecurityGroups.rc",
ENGLISH_SUBDIR "\\secManFrame.rc",
ENGLISH_SUBDIR "\\SecManProductInformation.rc",
ENGLISH_SUBDIR "\\SecManToolbar.rc",
ENGLISH_SUBDIR "\\logon.rc",
ENGLISH_SUBDIR "\\ChangeUserPassword.rc",
ENGLISH_SUBDIR "\\global.rc",
ENGLISH_SUBDIR "\\icons.rc"

}
}

}

The option res_rc_options(string) is used to pass commands to the resource
compiler.
© Copyright IBM Corp. 2000 43

10.3 Makefile for a resource DLL

The content of the rSecMan.mak file follows:

Predefined symbols
ERASE=del /Q /F
GCPPC=icc
GSLINK=icc

GCPPFLAGS=\
-Gd+ -Q+ -Ft- -Gm+ /qautoimported -Ge-\
-I$(SRC_DIR)\ProdSoft\IOCUI\Resources\NT\LOCALE\EN_NZ

GRC = irc -v
PROGRAM = rSecMan
RC_INCLUDE = -i $(SRC_DIR)\ProdSoft\IOCUI\Resources\include
SRC_DIR = H:\common\ActiveOrder\C11U\bld\cmvc\src

all: rSecMan.dll

rSecMan.dll: rSecMan.obj dummy.obj
echo LIBRARY rSecMan >$(PROGRAM).def
@echo Linking rSecMan.dll
$(GSLINK) @<<
/B" /de /nobrowse /pmtype:vio /noe /code:RX /data:RW /dll"
/B" /def" /B" /nod:$(PROGRAM).lib"
/Fe$(PROGRAM).dll $(PROGRAM).res
dummy.obj
<<
$(GRC) $(PROGRAM).res \$(PROGRAM).dll
$(ERASE) $(PROGRAM).def

rSecMan.obj: \
$(SRC_DIR)\ProdSoft\IOCUI\Resources\NT\LOCALE\EN_NZ\rSecMan.rc

$(GRC) $(RC_INCLUDE) -r \
$(SRC_DIR)\ProdSoft\IOCUI\Resources\NT\LOCALE\EN_NZ\rSecMan.rc \
/fo$(PROGRAM).res

dummy.obj: $(SRC_DIR)\ProdSoft\dummy.cpp
@echo Compiling \
$(SRC_DIR)\ProdSoft\dummy.cpp
@echo into dummy.obj
$(GCPPC) @<<
-c $(GCPPFLAGS)
/Fodummy.obj
$(SRC_DIR)\ProdSoft\dummy.cpp
<<

The file rSecMan.rc has the following content:

rcinclude "SecurityProfileInfo.rc"
rcinclude "SecurityProfileSetPassword.rc"
rcinclude "MaintainSecurityGroups.rc"
rcinclude "SecManFrame.rc"
rcinclude "SecManProductInformation.rc"
rcinclude "SecManToolbar.rc"
rcinclude "logon.rc"
rcinclude "ChangeUserPassword.rc"
rcinclude "global.rc"
44 Getting to Know VisualAge C++ Version 4.0

rcinclude "icons.rc"

The file rSecMan.rc is compiled, rather than the included files, to speed the
compilation process and to reduce the size of the makefile.

10.4 Differences between the configuration file and makefile

The main differences you will notice between the two types of files are the
following:

• The configuration file does not need to state a C++ compiler, linker, and
resource compiler (tools) to be used. These are intrinsically known by
VisualAge C++.

• The configuration file does not need to show how the various tools are to be
executed and in what order.

• The configuration file does not need to build a dummy object file and link it in
order to satisfy the linker’s need for at least one object file to be linked.

10.5 Problems with building the resource library

There is a defect in VisualAge C++ Version 4.0 Fixpack 1 for Windows NT that
causes the build of a resource library to generate false error messages
(CPPC0836E, shown in Figure 4) for missing include files, even though the target
was built. Also, the status bar reports that the build was successful and only had
warnings. Until a fix is released, the extraneous error messages can ordinarily be
ignored when building the resource library on its own. The errors could not be
ignored, however, for building our entire small software project from a clean build
as discussed in 13.3.3, “Problems with executing our build process” on page 76.
That section discusses the workaround you need to perform.

Figure 4. VisualAge C++ defect when building rSecMan.dll

You may encounter another defect if you have more than one resource file and
you are compiling them into an executable. For this scenario, if you modify your
source code and perform an incremental build, then the build is likely to fail with
an error when invoking the resource compiler. The workaround is to build your
resources into a DLL as was done in this chapter.
Building a resource library 45

In any case, it is a much better practice to build your resources into a DLL, rather
than an executable, for the following reasons:

• It is faster to bind your resources into a small DLL than a medium- to large-
sized executable.

• Every time the executable is rebuilt, the resources will need to be rebound to
the executable.

• It is possible to replace the resource DLL with another without having to
recompile your application. This is needed in the case of multilingual
applications.

10.6 Other useful references

For information on using resource files with VisualAge C++, see the following
pages in the online Task help:

• Use Resource Source Files as Sources for a Build

• Compile and Bind Resources
46 Getting to Know VisualAge C++ Version 4.0

Chapter 11. Building two targets in one configuration

In this chapter we take a look at building more than one target in one
configuration file. There can be problems associated with this that will cause you
to break up the configuration file into multiple configuration files. This chapter will
explore those problems, explain their cause, and show you what you can do to
resolve them.

11.1 Building schema and spp in one configuration

In Chapter 7, “Running external tools", we built a single executable, spp.exe. Now
we will try to build two executables in one configuration file by listing both targets,
and observe what happens when we try to build. A configuration file with both
targets can consist simply of the following lines:

include "schema.icc"
include "spp.icc"

When this is built, the result is the same as replacing the full text of both files into
one configuration. However, doing this results in the error messages shown in
Figure 5.

Figure 5. Errors produced when the one-definition rule is broken

Both targets define several macros of the same name with different values. This
is not permitted within the same codestore. VisualAge C++ enforces the
one-definition rule: a definition can only occur once per codestore. Hence, in
order to build schema and spp, they need to be built separately into separate
codestores.

11.2 Keeping in step with the one-definition rule

VisualAge C++ enforces the C++ programming rule to not declare or define the
same object across multiple source files with either the same or different
declarations or definitions. That is in part why header files were introduced. The
© Copyright IBM Corp. 2000 47

standard practice is for a header file to contain declarations and the source file to
contain the definitions (implementations) of those objects declared in the header
file. And for the same object there should be just one declaration and one
definition.

It is possible to build more than one target in the same codestore as long as you
abide by the rule to have unique declarations or definitions.

11.3 Breaking the one-definition rule within one target

A codestore permits only one declaration or definition of an object. Earlier in this
chapter you saw that building multiple targets from one configuration file can
cause the one-definition rule to be broken. This is not the only scenario to break
the one-definition rule.

The rule can also be broken with just one target in a configuration file. This
typically happens when declarations occur within source files instead of header
files. It is a good programming practice to place declarations only within header
files to avoid potential scenarios of breaking the one-definition rule.

An example of breaking the one-definition rule within one target is shown below.
Here we have two source files, both declaring the same structure, Tree. The two
structures have the same name, although their contents are different.

//
// Excerpt from file compiler.cpp
//
struct Tree
{

TreePtr left;
TreePtr right;
CompilerTool2Proc t; // This is better than a pointer to the

// array of compilers since it lets me
// add new ones in the future dynamically

};

//
// Excerpt from file extensio.cpp
//
struct Tree
{

TreePtr left;
TreePtr right;
Extension2Type t;

};

The solution is to rename one of the structures to CompilerTree. Be careful when
changing the source code to ensure all uses of the object you are changing are
renamed. Otherwise, further compilation errors and/or run-time errors will occur.
The renamed structure now becomes:

struct CompilerTree
{

CompilerTreePtr left;
CompilerTreePtr right;
CompilerTool2Proc t; // This is better than a pointer to the

// array of compilers since it lets me
48 Getting to Know VisualAge C++ Version 4.0

// add new ones in the future dynamically
};

Several other lines of code within the same source file had to be changed to refer
to structure CompilerTree instead of structure Tree to ensure there were no
further compilation errors and/or run-time errors.

11.4 Why is the one-definition rule not enforced by other compilers?

Batch compilers compile source code by executing the compiler with a given
source file as input. Hence, a compiler only sees the declarations or definitions
within the scope of that source file. When the compiler compiles the next source
file, it has already discarded the information from memory of compiling the
previous source file. Thus, if a programmer declares or defines the same thing in
two source files, the compiler will be none the wiser and will happily compile both
source files.

The only way a batch compiler could possibly enforce the one-definition rule
would be to compile all source code in one pass. This can be accomplished by
writing a meta-source file that includes more than one real source file and
compile that one meta-source file instead of each individual real source file. An
example of this follows:

//
// Excerpt from metasrc.cxx
//
#include "compiler.cpp"
#include "extensio.cpp"

11.5 Other useful references

For a complete explanation of the one-definition rule, refer to Section 3.2 of the
ISO C++ Standard document.
Building two targets in one configuration 49

50 Getting to Know VisualAge C++ Version 4.0

Part 2. Broader changes to your projects

In the first part of this book, we focused on making the change from configuration
files to makefiles. However, the makefile is not the only part of your project that
will be impacted by the new method of compilation.

In this section we will look at ways in which the structure and organization of your
project can be adjusted to help take advantage of the codestore and the IDE.
© Copyright IBM Corp. 2000 51

52 Getting to Know VisualAge C++ Version 4.0

Chapter 12. Designing configuration files for project teams

In this chapter we will take a look at how you can design your configuration files
when many developers are working in a project team. There are a number of
approaches a project team can take. We will present one recommended
approach. You will need to consider the following:

• The team structure of your project if there are multiple teams within a project.
Also consider the dependencies between teams.

• The granularity of your components (executables and libraries).

• The dependencies between your components.

• The amount of reuse present in your configuration files.

This chapter will show you how carefully designing your configuration files will
lead to better management of readability and maintenance.

12.1 Splitting a project into architectural areas

All projects other than trivial ones will have many components (executables,
dynamic link libraries, static libraries and resource libraries). In an ideal situation,
many developers hungry to write C++ source code will be resourced to develop
these components. It is usually the responsibility of the project’s architect to work
out how a project can be split into components.

A common first split of a project is into three main architectural areas:

• The infrastructure or framework. This normally contains the implementation of
the non-functional requirements, and it forms the foundation for the application
to be built on top of it.

• The application’s user interface. This contains the many window designs,
navigation behavior between windows and window validation logic.

• The application business logic. The contents are the implementation of the
functional requirements provided by the business users.

A project is usually split this way due to the type of expertise expected from a
developer working in each area.

12.1.1 Infrastructure
The expertise required by a developer working in this domain is very specialized.
It has no bearing on the direct functional requirements, as it mainly involves
in-depth knowledge of software and hardware such as: middleware,
communication protocols, third-party libraries, operating system services,
hardware platform, development standards and practices, developer tools.

It is quite common for the developers in this area to be very experienced. They
can be significantly involved in leading developers in the other teams, as their
experience and the nature of their work requires the other components to adhere
to the standards and practices that they establish.
© Copyright IBM Corp. 2000 53

12.1.2 User interface
Developers working in this domain should have a lot of skills with good user
interface design. Familiarity with developer tools for building user interfaces is
very important too. It is usually quite difficult to build event-driven graphical user
interfaces in comparison to common procedural/message programming.

12.1.3 Business logic
The expertise required by developers for this domain is less technology-driven
than the others. Instead it requires developers to learn more about the business
workflow and how their implementation will interact with the user interface and
infrastructure.

12.2 Your project’s directory structure

Medium- to large-sized projects need to design a directory structure to reflect
their expected architecture and component design. For instance, the following is a
hypothetical example of part of a project’s directory structure:

{root}
| Infrastructure

| Middleware
| Comms

| Application A
| UserInterface
| BusinessModel
| DatabaseAccess

| Application B
| UserInterface
| BusinessModel
| DatabaseAccess

...etcetera

12.2.1 Reasons for having a directory structure
Designing and implementing a directory structure for all of your project’s files is
an important step to ease the management of medium- to large-sized projects.
Some of the reasons why you should carefully plan a directory structure for your
project are as follows:

• Using a directory structure for your source and header files is done for the
same reason you choose to have directories on your disk drive for your
applications: you want to organize your files into areas that make it easy to
find a certain file in the future.

• A directory structure will help maintain good build performance as the number
of files increases. If you were to have thousands of files in one directory, the
build performance would suffer, as the filesystem performance usually
degrades under these conditions.

• A directory structure will make it easier to package and transport individual
components. It is easier to do this when all the files for one component can be
easily found in one directory and its subdirectories. If the files are not isolated,
you have to selectively choose each individual file from among all the other
project files when you want to build a component.
54 Getting to Know VisualAge C++ Version 4.0

12.2.2 Avoiding time-consuming directory searches during builds
Once you have decided on a directory structure, you can use the incl(searchpath,
path) option to tell the compiler where to look for your files. However, it is better to
avoid using a long list of incl(searchpath, path) options.

When VisualAge C++ searches for a file in a long series of directories in the first
part of the list, only to eventually find it in one of the last few directories, a
considerable amount of time is wasted during builds. This becomes more
significant when using distributed file systems such as DFS, which can
significantly lengthen directory searches on platforms such as OS/2.

The way to avoid using a long list of incl(searchpath, path) directives is to have
part of the directory information contained in your source directives, and have the
incl(searchpath, path) option to point to a root directory. This way, when
VisualAge C++ searches for the file, it already has several levels of directory
information available to quickly locate the file. An example of this is shown in the
libFramework.icc file:

option ProjectOptions = gen(rtti, "all")
{

BASE_DIR = "h:/common/ActiveOrder/fwk3.5/3.5.2"
SRC_DIR = BASE_DIR "/cmvc/src"
GEN_DIR = BASE_DIR "/gen"
OBJ_DIR = GEN_DIR "/Nt/obj_dbg"
option link(linkwithmultithreadlib), link(linkwithsharedlib),

lang(nokeyword, "bool"), lang(nokeyword, "true"),
lang(nokeyword, "false"), define("IC_LANG_BOOL", 0),
define("_X86_"), define("IVB_IMPORT", "_Import"),
link(subsystem, "windows", 4, 0), incl(searchpath, "."),
incl(searchpath, OBJ_DIR "/ProdSoft/Framework/Schema"),
define("FwkCLIENT"), define("CICS_W32"),
link(exportAll, yes),

{
target "libFramework.dll"
{

//
// Common headers.
//
option macros('global', 'yes')
{

source
"ProdSoft/Framework/Common/FwkPlatform.hpp",
"ProdSoft/Framework/Common/FwkBigInteger.hpp",
"ProdSoft/Framework/Common/FwkLog.hpp",
"ProdSoft/Framework/Common/FwkMessages.hpp",
"ProdSoft/Framework/Common/FwkTimerBase.hpp"

}
source type('cpp')

"ProdSoft/Framework/Common/FwkAutoPtr.hpp",
"ProdSoft/Framework/Common/FwkBigDecimal.hpp",
"ProdSoft/Framework/Common/FwkCurrency.hpp"

}
}

}

Designing configuration files for project teams 55

12.2.3 Be aware of platform differences
The IBM OS/2 and Windows NT platforms ordinarily use the backward slash for a
separator between a parent and its child directory, whereas AIX uses the forward
slash character. If you are designing configuration files that are to be used on AIX
and either/both OS/2 and NT platforms, then use the forward slash character. The
latter two operating systems support either character, whereas AIX only supports
the forward slash character.

When using the IDE on OS/2 and NT to add source files to your configuration file,
you will find that the IDE may use the backward slash separator. Once you have
added all the source files to the configuration file, perform a find and replace to
use the forward slash separator. To perform a find and replace, open a Live Find
in your Source view (Ctrl+F), then select the Find and Replace option from the
menu, as shown in Figure 6.

Figure 6. Find and replace a string

12.3 Splitting a project into components

The next step for the architect is to determine how each of the architectural areas
is to correspond to components that can be built by the developers. In doing this,
the architect will need to consider the resourcing requirements for each
perimeter. This is important, as ideally each developer will want to be able to
develop their source code without interfering with other developers on a frequent
basis.

To do this, it would be ideal to have twice as many components as developers, so
that at any point in time, a project manager has one or two components that can
be assigned to each developer. And of course there are other combinations, such
as one for developer A, three for developer B, and so on. The combinations will
no doubt vary as the project proceeds.

The average number of components per developer may vary depending on the
degree of interaction between the components. For example, there is little reason
to separate one component into two components if the resulting two components
56 Getting to Know VisualAge C++ Version 4.0

would still have a high degree of interaction. In such a case, it is likely to mean
that one developer will need to be developing both components.

On the other hand, a component may be split into two or more components in
situations where the codestore is becoming unmanageable (for example, too
much memory is required and/or too much time is required to build it). See
13.1.1, “Reducing the size of a codestore” on page 67 for a discussion on splitting
one library into two libraries.

12.4 Reusing elements of configuration files

We suggest that you identify elements of your configuration files that are
reusable, then place those reusable elements into a separate configuration file
that can be included in your component configuration files. This can improve
maintainability and make it easier to construct new component configuration files.
It will be easier because the commonality will be replaced with one or more
simple include directives.

12.4.1 Design points for identifying reuse
The easiest and often the best way to identify reuse is to produce several
configuration files and examine them to see what is common between them. The
broad areas of commonality are:

1. Compiler and linker options.

2. Include directory paths.

3. Promoted source, header, inline and template definition files. These can be
categorized to subdivide a possibly long list. For example, if your components
have many subsystems, categorize the files into subsystems.

12.4.2 Promoted source directives for reusable components
Imagine for the example directory structure introduced in 12.2, “Your project’s
directory structure” on page 54 . In this example, both applications A and B are
uses of the Infrastructure.

{root}
| Infrastructure

| Middleware
| Comms

| Application A
| UserInterface
| BusinessModel
| DatabaseAccess

| Application B
| UserInterface
| BusinessModel
| DatabaseAccess

...etcetera

In this scenario there will be a number of header, inline and template definition
files that will be used by the Infrastructure and the two applications. The exercise
you need to undertake is to determine which files are used by all of those
components.
Designing configuration files for project teams 57

Once you have the list of files, you need to create a new configuration file that will
be included within the configuration file for each of the components. The contents
of the new configuration file will be a list of source directives corresponding to
that list of files. Then you will edit the Infrastructure and application configuration
files and add an include directive to include the new configuration file.

The following is an excerpt taken from the new configuration file
libFrameworkGroups.icc that contains the source directives from our project,
which we identified as reusable:

//
// Common reusable files for the two Applications.
//
option macros('global', 'yes')
{

source type(’cpp’)
"ProdSoft/Framework/Common/FwkBigInteger.c",
"ProdSoft/Framework/Common/FwkBigInteger.hpp",
"ProdSoft/Framework/Common/FwkBigInteger.inl",
"ProdSoft/Framework/Common/FwkMessages.hpp"

}
source type('cpp')
"ProdSoft/Framework/Common/FwkAutoPtr.c",
"ProdSoft/Framework/Common/FwkAutoPtr.hpp",
"ProdSoft/Framework/Common/FwkAutoPtr.inl",
"ProdSoft/Framework/Common/FwkBigDecimal.hpp"

The following excerpt is taken from one of the application configuration files that
shows the new configuration file being reused:

target "ApplicationA.exe"
{

include "libFrameworkGroups.icc"
//other sources specific to this component
//would be listed here

}

After performing these changes and performing a build of the two applications,
you will obtain the following benefits:

• Information from both configurations is available in the IDE. You will notice in
the Class page of the Project tab that you can conveniently browse the classes
that you can reuse from the Infrastructure component.

• Your application configuration files will be optimized as they have all of the
files that you are allowed to reuse in the Infrastructure already promoted.

• Maintenance of the three component configuration files will be made easier,
as whenever a new file is added to the Infrastructure that is to be reused, then
adding it to the new configuration file automatically updates the two
applications.

12.4.3 Placement of reusable configuration files
Some of the reusable configuration files discussed in 12.4, “Reusing elements of
configuration files” on page 57 would be best placed in the root directory of the
directory tree discussed in 12.2, “Your project’s directory structure” on page 54,
as it is expected those files will be reused by many of the components in the
underlying directories. It is likely you will have reusable configuration files
58 Getting to Know VisualAge C++ Version 4.0

concerning the Infrastructure that are to be used by Application A and B. Place
those files in the Infrastructure directory.

12.5 Organizing libFrameworkGroups.icc by grouping sources

Naming a group of source files and using that name in many configuration files
instead of repeating the list of source file names becomes important in project
development. In 9.3, “Changing libUIFwk.icc to build a DLL” on page 40 we
discussed the build of libUIFwk.dll. This has a dependency on libFramework.dll.
Library libUIFwk.dll uses header files containing classes and methods from
libFramework.dll.

Typically, in this type of scenario there will be a group of header files written for
the build of libFramework.dll. This group can normally be subdivided into two
sub-groups as follows:

• The header files private to the build of libFramework.dll.

• The header files public to users of libFramework.dll.

We are primarily interested in grouping the public header files, although for
consistency, the private header files will be done as well. To do this we need to
examine libFramework.icc and determine the files that belong to each sub-group.
The sub-groups will have two sub-groups themselves, as we need a split between
macro and non-macro source files.

To summarize, the groups we will have are as follows:

• Private header files of libFramework.dll.

• Macro private header files.

• Non-macro private header files.

• Public header files of libFramework.dll.

• Macro public header files.

• Non-macro public header files.

12.5.1 Using groups in configuration libFramework.icc
To illustrate the use of private groups, we will change configuration
libFramework.icc to use groups. To facilitate reusability, the groups will be defined
in the included file libFrameworkGroups.icc.

After using the group directive, you will notice that libFramework.icc does not
contain any source file names. It now purely uses the groups defined in
libFrameworkGroups.icc. Hence libFrameworkGroups.icc now has all of the
source file names.

The content of libFramework.icc is as follows:

include "libFrameworkGroups.icc"

option ProjectOptions = gen(rtti, "all")
{

BASE_DIR = "h:/common/ActiveOrder/fwk3.5/3.5.2"
SRC_DIR = BASE_DIR "/cmvc/src"
GEN_DIR = BASE_DIR "/gen"
Designing configuration files for project teams 59

OBJ_DIR = GEN_DIR "/Nt/obj_dbg"
option link(linkwithmultithreadlib), link(linkwithsharedlib),

lang(nokeyword, "bool"), lang(nokeyword, "true"),
lang(nokeyword, "false"), define("IC_LANG_BOOL", 0),
define("_X86_"), define("IVB_IMPORT", "_Import"),
link(subsystem, "windows", 4, 0), incl(searchpath, "."),
incl(searchpath, OBJ_DIR "/ProdSoft/Framework/Schema"),
define("FwkCLIENT"), define("CICS_W32"),
link(exportAll, yes)

{
target "libFrameworkOpt.dll"
{

source
"libFwkCore.lib"

SCHEMA_BIN = SRC_DIR "\\schema.exe"
SCHEMAGEN_DIR = OBJ_DIR "\\ProdSoft\\Framework\\Schema"

run before
sources("ProdSoft/Framework/Model/FwkMdlMapAttribute.s")
targets("FwkMdlMapAttribute.cpp","FwkMdlMapAttribute.hpp",

"FwkMdlMapAttributeAttrib.cpp",
"FwkMdlMapAttributeAttrib.hpp")

SCHEMA_BIN " -o" SCHEMAGEN_DIR " -s "
SRC_DIR "\\ProdSoft\\Framework\\Model\\FwkMdlMapAttribute.s"

//
// Source directives.
//
option macros('global', 'yes')
{

source type(cpp)
libFwkPublicM, libFwkPrivateM

}
source type(cpp)

libFwkPublic, libFwkPrivate
}

}
}

You can see at the top of libFramework.icc that libFrameworkGroups.icc is
included. The only two source directives used are for the macro and non-macro
source files that have the Framework public and private source files.

12.5.2 Defining groups in configuration libFrameworkGroups.icc
The Framework component consists of a number of subsystems. For brevity, only
two of the subsystems will be shown here. The naming convention for the groups
is:

lib{Component}{Visibility}{Subsystem}[Macros]

To illustrate the use of the naming convention, we have:

• Component, which is Fwk (short for Framework).

• Visibility has two possible values: Public and Private. Public refers to source
files to be exposed to users (other components) of Framework. Private refers
to source files to be internalized within Framework.
60 Getting to Know VisualAge C++ Version 4.0

• Subsystem in our example has four possible values: System, OCL, Comms
and Config. The first two are system header and OpenClass files from
VisualAge C++’s include directory. The last two are subsystems of Framework.

• Macros is optional and can have value M. The macro source files will be listed
in a group that has suffix M, while non-macro source files will be listed in
another group that does not have this suffix.

In our example we will have 16 groups defined for our subsystems, eight for public
files and eight for private files. Four additional groups will be defined that collapse
our subsystems into our component along the boundaries of public and private
groups that have macro and non-macro files.

To better illustrate this, here is the content of libFrameworkGroups.icc that
reflects the above groupings:

//
// System headers.
//
group libFwkPublicSystemM =

"stdarg.h"
group libFwkPublicSystem =

'fstream.h'
group libFwkPrivateSystemM =

"io.h", "locale.h", "nl_types.h", 'iostream.h', 'sys/stat.h'
group libFwkPrivateSystem =

"strstrea.h", "typeinfo", "typeinfo.h"
//
// OpenClass headers.
//
group libFwkPublicOCLM =

"iseq.h", "ikb.h", 'iset.h', "iseqtab.h", "istk.h", 'ikss.h'
group libFwkPublicOCL =

"iseq.inl", "ikb.inl", "iobservr.hpp", "iobservr.inl",
'ihandler.hpp', 'ihandler.inl', 'iset.inl', "iseqtab.inl"
"istk.inl", 'ikss.inl', "iobjwin.hpp", "irkeyset.h", "irkeyset.inl"

group libFwkPrivateOCLM =
"itrace.hpp"

group libFwkPrivateOCL =
'ievent.hpp", "ievent.inl", "ievtdata.hpp", "ievtdata.inl"

//
// Comms files.
//
group libFwkPublicCommsM = null
group libFwkPublicComms =

"ProdSoft\\Framework\\Comms\\FwkComSubsystem.hpp"
group libFwkPrivateCommsM = null
group libFwkPrivateComms =

"ProdSoft\\Framework\\Comms\\FwkComImplCICS.hpp",
"ProdSoft\\Framework\\Comms\\FwkComImplCICS.cpp"

//
// Config files.
//
group libFwkPublicConfigM =

"ProdSoft/Framework/Config/FwkCfgTables.h"
group libFwkPublicConfig =

"ProdSoft/Framework/Config/FwkCfgConsts.hpp",
"ProdSoft\\Framework\\Config\\FwkCfgSubsystem.hpp",
Designing configuration files for project teams 61

"ProdSoft/Framework/Config/FwkCfgBase.hpp"
group libFwkPrivateConfigM = null
group libFwkPrivateConfig =

"ProdSoft/Framework/Config/FwkCfgConsts.cpp",
"ProdSoft/Framework/Config/FwkCfgBase.cpp"

//
// Groups.
//
group libFwkPublicM =

libFwkPublicSystemM, libFwkPublicOCLM,
libFwkPublicCommsM, libFwkPublicConfigM

group libFwkPublic =
libFwkPublicSystem, libFwkPublicOCL,
libFwkPublicComms, libFwkPublicConfig

group libFwkPrivateM =
libFwkPrivateSystemM, libFwkPrivateOCLM,
libFwkPrivateCommsM, libFwkPrivateConfigM

group libFwkPrivate =
libFwkPrivateSystem, libFwkPrivateOCL,
libFwkPrivateComms, libFwkPrivateConfig

Notice the groups libFwkPublicCommsM and libFwkPrivateCommsM are
assigned null. This is because there are no macro source files for the Comms
subsystem. Even so, they are intentionally defined as a provision for the future
should there be Comms macro source files we need to add later.

The last four groupings collapse the subsystem groups into the component level.
This layering of groups into subsystem and component levels is to aid readability
and make it easier when adding new source files. In the IDE you can use the
Options or Targets views in the Configuration section to easily obtain a list of all
the source files belonging to the Config components, as shown in Figure 7.

The macro source files are processed in the order they appear in your
configuration file. There can be slight deviations from the above subsystem
grouping convention depending on the dependencies between macro source
files. For example, component A appears before B, and when a macro source
file from B is needed before a macro source file from A, then you might not be
able to have a pure split. In this situation you either need to move component B
before A, or violate the grouping convention and place that macro source file
from component B into component A. Attempt the former solution if the
dependency is simple.

The grouping convention might need to be violated
62 Getting to Know VisualAge C++ Version 4.0

Figure 7. Using the IDE to view a list of all files belonging to a subsystem

12.5.3 Adding new files to groups
The other reason mentioned earlier was to make it easier to add new source files.
Imagine that we need to create a new source file for the Config subsystem and it
is a non-macro private source file. Now that we have our groups in place, this can
easily be accompished. To do so, select the Project Workbook menu and then its
Open or Create File... menu item. The Open or Create File dialog box will appear
as shown in Figure 8.
Designing configuration files for project teams 63

Figure 8. Using the Open or Create File dialog box to create a new file

In the dialog box we enter filename FwkCfgParameters.hpp, select the Add to
Project checkbox, select the Add Source to Source Directive... radio button, and
finally select the Open push button. The Add to Source dialog box will then
appear as shown in Figure 9.

Figure 9. Adding a new source file to a source directive
64 Getting to Know VisualAge C++ Version 4.0

We select the libFwkPrivateConfig group and select the Apply button. The result
is the new non-macro, private Config source file FwkCfgParameters.hpp is added
to the libFwkPrivateConfig group.

12.6 Organizing libFramework.icc by grouping options

You will no doubt discover that many of your components use some of the same
options for compiling and linking. This means the common options can be
removed from your many components and placed in a reusable configuration file,
in the same way that you can group your source files.

By examining the configuration files for the spp, libFramework and libUIFwk
components we can see the following common options being used:

incl(searchpath, "."), lang(nokeyword, "bool"), lang(nokeyword, "true"),
lang(nokeyword, "false"), define("IC_LANG_BOOL", 0), define("IVB_IMPORT",
"_Import"), link(linkwithmultithreadlib), link(linkwithsharedlib)

To create an option group, you use the following syntax:

option group_name=list_of_options

We can create an option group for these options named CommonOptions simply
as follows:

option CommonOptions = incl(searchpath, "."), lang(nokeyword, "bool"),
lang(nokeyword, "true"), lang(nokeyword, "false"), define("IC_LANG_BOOL",
0), define("IVB_IMPORT", "_Import"), link(linkwithmultithreadlib),
link(linkwithsharedlib)

Then we need to place this option group into a reusable configuration file that we
will call Common.icc. To use the option group in our spp, libFramework, and
libUIFwk configuration files, we simply insert the following at the top of each of
those configuration files:

include "Common.icc"

Lastly, in each of those three configuration files we replace the reusable list of
options with the word CommonOptions. At any time in the future, if a new option
needs to be applied to those three configuration files, then we simply edit the
option group defined in the Common.icc file.

12.7 Organizing one or several targets into a configuration file

When designing your configuration files for each of your components, you will
need to determine whether it is logical for some configuration files to contain
more than one component (target). This is a viable decision when, for example,
two components are closely coupled and only one of the components is publicly
accessible by any other component in the project.

For example, combining the schema.exe and spp.exe targets into one
configuration file seems like a good idea, considering that all other components
only utilize schema, and schema is the only component that has a dependence
(being run-time) on spp. Unfortunately, because they each define a few macros
with different values, this is not technically possible. The solution was to have the
two targets in separate configuration files. For more information on this, see
Chapter 9, “Building an archive (static library)” on page 39.
Designing configuration files for project teams 65

66 Getting to Know VisualAge C++ Version 4.0

Chapter 13. Techniques for better build efficiency

This chapter focuses on how VisualAge C++ can be used to perform more
efficient builds. It shows what causes a codestore to grow excessively, and how
this can be circumvented. It discusses developing with multiple projects
(codestores) concurrently.

13.1 Managing system header files

As you increase the number of system header files that are included in a build,
the codestore grows in size. While this offers the advantage that more information
is available to you in the IDE, such as in the Classes and Declarations views,
there are also the following disadvantages:

• More disk space is consumed.

• More memory is consumed.

• The time required to build increases.

13.1.1 Reducing the size of a codestore
The techniques to reduce the size of a codestore can involve one or more of the
following:

1. Promote included header files (secondary source files) as primary source files
to ensure that the codestore only has one image of their contents. This is
perhaps the one improvement that will have the greatest impact on the
efficiency of your configuration.

2. Isolate your dependence on expensive header files, such as windows.h on
Windows NT and os2.h on OS/2, to use in one or a few source/header files.

3. Split libraries and executables into more libraries and have a separate
codestore each.

4. Check your configuration file for any header files that contain declarations for
things not used elsewhere in this configuration, and remove them.

5. Remove all #includes of header files from your source and header files.

13.1.2 Promoting #include files
Performing this task will, without doubt, give the largest optimization to your
codestore. The technique to determine which files are included (secondary
source files) is to use the Source Files pane of the Source Files page of the
Project tab. Initially, in this pane you will see only your source files, and not those
of STL/OpenClass nor system header files. You can add the last two categories of
files by clicking on the filter button as shown in Figure 10, and selecting Show All.
© Copyright IBM Corp. 2000 67

Figure 10. Showing all source files in the Source Files view

Scroll down the list until you start seeing files with the ’I’ glyph. To begin with,
ensure all your application source files are promoted, then start on the
OpenClass and/or system header files.

Before you promote a secondary source file, you should check whether it defines
any macros that are used by other primary source files. If so, then the option
macros(’global’,’yes’) needs to be applied to that source file. Otherwise, the
macros defined in that file will only be known within the scope of that file.

To determine if a source file contains any macros can be performed reasonably
easily, although tediously: select the source file and in the editor perform a find for
#define. If the source file defines macros other than the guard define which
prevents multiple reinclusion of a header file, then it should be promoted as a
macro source file.

Be careful with the order in which you list the macro source files in your
configuration file. They will be processed in the order in which they are listed. The
order becomes important when a macro source file uses a macro from another
macro source file. The latter macro source file needs to be listed before the
former; otherwise, an error will be produced during build.

We do not recommend that you promote all secondary source files. There are
likely to be too many files in the average project for you to easily check every one.
There will also come a point where promoting more files will make little difference
to codestore size. Instead, promote those which you believe are included more
than once, as it is only those files which will have a significant impact on the size
of your codestore.

13.1.3 Isolating dependence on expensive header files
On the Windows NT and OS/2 platforms, the windows.h and os2.h files are
expensive header files, as they include many other header files and accumulate a
great number of declarations. For example, on the Windows NT platform, the
following configuration file generates a codestore of size 4,702,575 bytes.

option macros(global, yes)
{

source type(cpp) "windows.h"
}

Compare this to a simpler header file such as stdio.h that generates a codestore
of size 242,178 bytes.
68 Getting to Know VisualAge C++ Version 4.0

Now we will find where windows.h is being used and isolate our dependence on
it. The method to do this involves:

• Searching for the text windows.h by using the Search page of your Project tab
and determining which of the source and header files you found use things
declared in windows.h.

• Modifying your found header files to use forward declarations if the full
declaration is not required. This will eliminate the need to include windows.h.

• Removing windows.h from your configuration file and from being included in
your source and header files.

• Consolidating all uses of declarations in windows.h to one or a few source and
header files. This will become the basis for an interface to services provided
by windows.h.

Once you have completed the above, performing a build will likely fail as your files
still have a dependence on windows.h. All we have done is to isolate the
dependence to a small set of source and header (isolated) files. See 13.1.4,
“Moving source and header files into a separate library” on page 69 for
instructions on building the isolated files into a separate library.

13.1.4 Moving source and header files into a separate library
For libFramework.dll we found that a few source and header files used windows.h.
We removed those files from libFramework.icc and added them to our new
configuration file called libFwkCore.icc.

The content of libFwkCore.icc is as follows:

option ProjectOptions = gen(rtti, yes)
{

BASE_DIR = "h:/common/ActiveOrder/fwk3.5/3.5.2"
SRC_DIR = BASE_DIR "/cmvc/src"
GEN_DIR = BASE_DIR "/gen"
OBJ_DIR = GEN_DIR "/Nt/obj_dbg"
option link(linkwithmultithreadlib),

incl(searchpath, "."), lang(nokeyword, "bool"),
lang(nokeyword, "true"), lang(nokeyword, "false"),
define("IC_LANG_BOOL", 0), define("_X86_"),
define("IVB_IMPORT", "_Import"),
define("FwkCLIENT"), define("_Export", ""),
incl(searchpath, OBJ_DIR "/ProdSoft/Framework/Schema")

{
target "libFwkCore.lib"
{

option macros('global','yes')
{

source "winsock2.h"
}
option macros('global','yes')
{

source
"ProdSoft\\Framework\\Interface\\Applications\\FwkExtTCP.hpp",
"ProdSoft\\Framework\\Interface\\Applications\\FwkExtWeb.hpp",
"ProdSoft\\Framework\\Common\\FwkPlatform.hpp"

}
source type('cpp')
Techniques for better build efficiency 69

"ProdSoft\\Framework\\Interface\\Applications\\FwkExtTCP.cpp",
"ProdSoft\\Framework\\Interface\\Applications\\FwkExtWeb.cpp",
"ProdSoft/Framework/Common/FwkPlatform.cpp",
"ProdSoft/Framework/Model/FwkMdlKeyFactory.cpp",
"ProdSoft/Framework/Profile/FwkUprDCE.cpp",
"ProdSoft\\Framework\\Model\\FwkMdlKeyFactory.hpp",
"ProdSoft\\Framework\\Profile\\FwkUprDCE.hpp"

}
}

}

For the above source files, the level of dependence on windows.h is as follows:

• FwkExtTCP.cpp and FwkExtTCP.hpp were removed from libFramework.icc,
because they use windows.h but are not used by anything else.

• FwkExtWeb.hpp does not use windows.h but is used by libFramework.dll,
hence it remains in libFramework.icc.

• FwkExtWeb.cpp uses FwkExtTCP.hpp and is no longer used by
libFramework.dll, hence it was removed from libFramework.icc. Remember
that FwkExtTCP.hpp uses windows.h, thus, for libFramework.icc to lose its
dependence on windows.h, FwkExtWeb.cpp had to be moved to
libFwkCore.icc to be with FwkExtTCP.hpp.

• FwkPlatform.hpp was including winsock2.h and is used by libFramework.icc.
Hence the #include of winsock2.h was removed. The only thing used from
winsock2.h by libFramework.icc was from an embedded #include file that
declared a typedef for BYTE. This typedef was copied and pasted into
FwkPlatform.hpp in place of the include of winsock2.h.

• FwkMdlKeyFactory.cpp and FwkUprDCE.cpp use windows.h, hence they were
removed from libFramework.icc.

• FwkMdlKeyFactory.hpp and FwkUprDCE.hpp do not use windows.h, but they
were used by libFramework.icc, hence they remained.

The last step to make this work was to have libFramework.dll link against our new
static library. This was easily accomplished by adding the following source
directive to libFramework.icc within the target directive for libFramework.dll:

source "libFwkCore.lib"

Figure 11 shows the revised organization of the project after splitting
libFramework.dll into two libraries.

The integrated debugger in VisualAge C++ only uses the codestore for debug
information. This means that if you have an executable that calls functions in a
DLL, you built in another codestore, you cannot use the integrated debugger to
debug the functions called in your DLL. The alternatives are to build the two
targets into one codestore, or to use the option link(debug, yes) for both targets
and use the debugger from C and C++ Compilers Version 3.6.5 on Windows
NT.

Code in libFwkCore cannot be debugged
70 Getting to Know VisualAge C++ Version 4.0

Figure 11. The new structure of the project

13.1.5 Removing files that are no longer referenced
It is possible over time that your configuration files may include source and/or
header files that are no longer used. This can occur due to the changing nature of
your source code as time progresses. Hence, you may want to periodically
inspect your configuration files to see if you can determine, at a glance, any files
that are no longer referenced, and remove them from your configuration file.

schema

spp

flex bison

libUIFwk.lib

libUIFwk.dll

rSecMan.dll

run

run
run

run

runrun

libFramework.dll

libFwkCore.lib

Link

Compile dependency

Compile/link

Some source code in libUIFwk.dll references the source code compiled into
libFwkCore.lib. The library libFwkCore.lib is linked into libFramework.dll. Hence
libFramework.dll now contains the compiled source code of libFwkCore.lib.
Because libUIFwk.dll links against libFramework.dll to resolve external
references, the source code in libFwkCore.lib needs to be exported in order for
libUIFwk.dll to resolve all its external references.

If you are using AIX, this cannot be done, but it can be done on OS/2 or
Windows NT. It cannot be done on AIX because the archive does not contain
information on which members have been exported, whereas OS/2 and
Windows NT do contain this information in the import library.

To flag members in libFwkCore.lib to be exported from libFramework.dll, it is
easiest to modify the source code that is compiled into libFwkCore.lib. Use the
_Export keyword as part of your class or member declarations. Use the
keyword at the class scope to export all members of the class. Otherwise, use
it at the member scope if you need to export a subset of all members of a class.

Be careful of moving source code with members to be exported
Techniques for better build efficiency 71

When applying the technique described in 13.1.4, “Moving source and header
files into a separate library” on page 69 you will need to remove files that are no
longer referenced. It is important to perform this immediately, otherwise it is likely
you will forget to do this in the future, and you will not obtain all the advantages
you sought.

13.1.6 Removing #include from all your source files
Carrying out this technique helps you to determine which secondary source files
you are directly including in application files that you have not promoted. These
source files will likely be the ones that, if promoted, will give your build a large
boost in build performance.

13.1.7 Results of applying these techniques in our project
In Chapter 8, “Building a shared (dynamic link) library” on page 35, we explored
building a Dynamic Link Library (DLL) named libFramework.dll. For this example
we applied all of the points listed at the beginning of this chapter.

13.1.7.1 Results of applying the isolation technique
The results of isolating and moving out the source files with dependence on
windows.h are shown in Table 4. The most significant reductions were for the
codestore file and memory use. The advantage of having a smaller codestore file
is the saving in disk space and speed in saving the codestore file. If a number of
developers are working on its contents and not that of libFwkCore, then the
latter’s codestore is not needed by them. Reducing the amount of memory being
utilized means that memory constrained systems will perform better, and the
reduction observed for clean build times would be greater if mild to heavy
memory paging occurs.

Table 4. Results of applying first two codestore optimization techniques

13.1.7.2 After applying all techniques
After applying the last three techniques above, further reductions were obtained.
The reductions were not as great after applying the first two techniques. This is
largely because the configuration file to begin with already had included files
promoted, as described in 13.1.2, “Promoting #include files” on page 67.

Affected area Original
libFramework

Optimized
libFramework

Reduction

codestore file size 27,736,507 bytes 23,305,848 bytes 16%

IDE memory utilization 85,044 kilobytes 77,864 kilobytes 8.5%

clean build time 2m 40s 2m 31s 5.5%

As orderless programming is not part of the C++ standard, be careful if you
choose to remove #include directives from your source files. Only the
VisualAge C++ Version 4.0 compiler can compile your source code without
#include directives.

Building your code on non-VisualAge C++ platforms
72 Getting to Know VisualAge C++ Version 4.0

The new results are shown in Table 5. These reductions are being compared to
the values that existed before any of the techniques were applied above.

Table 5. Results of applying the five codestore optimization techniques

13.2 Developing multiple projects concurrently

You will no doubt find that if you have multiple projects that you are developing
concurrently, then opening one project, closing it, and then opening another
repeatedly can be a time-consuming exercise. If your computer has a sufficient
amount of memory and paging space, then you may find it more productive to
open a separate session of VisualAge C++ for each of your projects. This way
you can rapidly switch between projects, and you also have the advantage of
leaving the views of each project’s tabs, pages, and panes unaffected after the
switch.

13.3 Automating a project’s build process

Trivial projects that involve one component will not require a build process. When
a project grows and there are a multitude of components, then a build process is
required. The build process will coordinate the builds of each component when
the entire project needs to be built.

In automating the build process, the IDE cannot be used, as it requires user input.
Instead, a batch-oriented process is needed, and this can be achieved by using a
script file or even a makefile. To perform builds in batch mode, the vacbld
command must be used. This command takes as input a configuration file and
runs the incremental compiler to produce a codestore. Provided there are no
build errors, it will also produce the targets defined in the configuration file.

The vacbld command can be invoked simply as follows:

vacbld libFramework.icc

13.3.1 Building our project components collectively
We will develop a configuration file that is able to build all the components of our
small software project. First we will quickly recap the content of our project,
before delving into building them as part of a build process. To see in detail the
composition of our project, see Chapter 2, “About the sample project” on page 7.
Our small software project consists of:

• Two executables named schema.exe and spp.exe. One does not need to be
built before the other. However, both need to be built before proceeding with
building libFramework.dll.

• A static library, libFwkCore.lib.

Affected area Original
libFramework

Optimized
libFramework

Reduction

codestore file size 27,736,507 bytes 23,296,918 bytes 16%

IDE memory utilization 85,044 kilobytes 73,652 kilobytes 13.5%

clean build time 2m 40s 2m 15s 15.5%
Techniques for better build efficiency 73

• A dynamic link library, (DLL) libFramework.dll, that depends directly on
schema.exe and libFwkCore.lib.

• A static library, libUIFwk.lib, that depends on libFramework.dll having been
built because it needs some of the generated files from the latter’s build.

• A resource library, rSecMan.dll, that has no dependencies on the other
components.

As can be determined from the above project composition, we have a number of
dependencies that need to be factored in. We will use the run directive to build
each component using vacbld. We will use the run directive’s sources and targets
parameters to implement the dependencies between our components.

13.3.2 Configuration file to implement our build process
The configuration file BuildProcess.icc is shown below. Notice its use of the run
directive to build our components, and how the correct source and target
parameters are specified to implement the required component dependencies.
The cleanup parameter is also used to enable a clean environment to be set up
before a clean build of the entire project. Ideally these directives would be placed
in each of the component configuration files and executed using the cleanup
option of vacbld. For simplicity, we have not done this.

//
// Setup the build environment.
//
BUILD_DIR = "h:\\common\\ActiveOrder"

///
//
// Build the components under the Application directory tree.
//
///

//
// Build rSecMan.dll.
//
run targets ("rSecMan.dll")

"echo Build rSecMan.dll",
"cd " BUILD_DIR "\\C11u\\bld\\cmvc\\src",
"vacbld rSecMan.icc"

//the run cleanup directive will only be executed when you select
//"Clean" from the IDE’s Project Workbook menu.
run cleanup

"cd " BUILD_DIR "\\C11u\\bld\\cmvc\\src",
"del rSecMan.ics rSecMan.dll"

///
//
// Build the components under the Framework directory tree.
//
///

//
// Build spp.exe.
//
run targets ("spp.exe")
74 Getting to Know VisualAge C++ Version 4.0

"echo Build spp.exe",
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"vacbld spp.icc"

run cleanup
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"del spp.ics spp.exe"

//
// Build schema.exe.
//
run sources ("spp.exe")

targets ("schema.exe")
"echo Build schema.exe",
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"vacbld schema.icc"

run cleanup
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"del schema.ics, schema.exe"

//
// Build libFwkCore.lib.
//
run targets ("libFwkCore.lib")

"echo Build libFwkCore.lib",
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"vacbld libFwkCore.icc"

run cleanup
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"del libFwkCore.ics libFwkCore.lib"

//
// Build libFramework.dll.
//
run sources ("schema.exe", "libFwkCore.lib")

targets ("libFramework.dll")
"echo Build libFramework.dll",
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"vacbld libFramework.icc"

run cleanup
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"del libFramework.ics libFramework.dll libFramework.lib"

//
// Build libUIFwk.dll.
//
run sources ("libFramework.dll")

targets ("libUIFwk.dll")
"echo Build libUIFwk.dll",
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"vacbld libUIFwk.icc"

run cleanup
"cd " BUILD_DIR "\\fwk3.5\\3.5.2\\cmvc\\src",
"del libUIFwk.ics libUIFwk.dll libUIFwk.lib"
Techniques for better build efficiency 75

13.3.3 Problems with executing our build process
Several problems were encountered with building our project using the
configuration file BuildProcess.icc. The entire project was built within the
Integrated Development Environment (IDE). The problems are as follows:

• Performing a clean build of rSecMan.dll (to cause it to be rebuilt) produces a
segmentation fault in the IDE. The work-around was to build it separately and
then build the entire project. See 10.5, “Problems with building the resource
library” on page 45 for further details on what was causing the problem.

• If the build for one of the components did not complete due to errors, then a
segmentation fault occurs in the IDE. The solution was to:

• Open the project for the component that failed.

• Fix the build errors.

• Close the IDE.

• Delete the codestore BuildProcess.ics (not the codestore for the failed
component).

• Restart the IDE and perform a build. The failed component will attempt to
build, starting where it finished earlier.

• The working directory is not changed to the directory where each of the
component configuration files reside. The workaround is to manually change
the working directory before executing vacbld.
76 Getting to Know VisualAge C++ Version 4.0

Chapter 14. Techniques for more efficient C++ programming

This chapter focuses on how VisualAge C++ can be used to perform more
efficient C++ development. It shows how the Integrated Development
Environment (IDE) can be used to locate certain types of inefficiencies, and how
you can replace them with an efficient equivalent. It explains what causes a
codestore to grow excessively and how this can be circumvented. It discusses
how to better manage your configuration files to make them more readable and
easier to maintain, as well as development with multiple projects (codestores)
concurrently.

14.1 Find and eliminate literal strings used with IString

One of the IDE’s strong features is the Find Uses view, described in Chapter 15.6,
“Search for objects, not for strings” on page 86. This allows you to locate all sorts
of objects, such as classes and methods.

You can take advantage of this to find uses of the IString constructor that take a
const char* as parameter so that you can find a large number of IString objects
constructed with a literal string. You can identify many IString objects constructed
with the same literal string and replace these with one static IString object. There
are several advantages to doing this:

• Executable/library size can be reduced, because an IString constructor call is
eliminated.

• Run-time performance can be improved after startup, because the
replacement static IString object is constructed only once during startup.

• Maintainability can be improved because the replacement static IString is
declared and defined in one place instead of being spread out amongst many
files.

• Run-time memory usage can be reduced because the executable/library size
is smaller.

There are several ways to search for uses of the IString constructor IString(const
char*) in the IDE. One method involves using the Classes page of the Project tab.
To do this, perform the following steps in order:

1. Select the Project tab.

2. Select the Classes page.

3. Select the Filter button on the Classes pane.

4. Select IBM Objects from the filter pop-up menu.

5. Either use the Live Find (press Ctrl+F) and search for class IString; or scroll
down the list of classes until you see the IString class. Figure 12 on page 78
shows how the former search is performed.

If you are using STL and not OpenClass, then you will no doubt be using the
equivalent class to IString being std::string. The technique described in this
chapter can be applied to std::string.

Standard Template Library (STL) equivalent of IString
© Copyright IBM Corp. 2000 77

6. In the Members pane, move the mouse pointer over the IString(const char*)

constructor and press the right mouse button once. A pop-up menu will
appear.

7. Select Open as a Workbook Section menu item to open that constructor onto
its own Workbook tab.

8. Select the Find Uses page to see all uses of that constructor.

Figure 12. Searching for IString in the classes pane

As an example, the build of schema.exe shows that there are 4 uses involving the
string "Key" as shown in Figure 13 on page 78. We will replace those uses with a
static const IString named strKey. To do this, we will create a new source file
named SchemaConsts.cpp and add it to the schema.icc configuration file.

Figure 13. Finding uses of a string

The content of our new file SchemaConsts.cpp is as follows:

class SchemaConsts
{

public:
static const IString strKey;

private:
SchemaConsts(); // prevent construction.

};

const IString SchemaConsts::strKey("Key");
78 Getting to Know VisualAge C++ Version 4.0

We then need to replace the use of "Key" with SchemaConsts::strKey. This is
easily accomplished within the IDE by selecting each of the uses and replacing
the string "Key" with SchemaConsts::strKey using the editor. After performing the
four changes, the size of schema.exe reduced from 439,808 to 438,784 bytes.
This is not a significant saving, but there can be hundreds of these in typical
applications, and so a reduction of several percent can easily be achieved.

Further similar changes and others described in 14.2, “Find and eliminate
temporary copies of objects" were made, and schema.exe was further reduced
from 439,808 to 431,104 bytes. This represents a 2% reduction. The amount of
reduction obviously depends on how well your C++ programmers know the
inefficiencies of C++ programming. For instance, with libFramework.dll we
achieved a more significant reduction of 15%, and there was still more room for
improvement.

14.2 Find and eliminate temporary copies of objects

The types of changes that were made to schema.exe are described in Table 6 on
page 79. This table refers to strName, its type is IString. When strName is used in
the context of the class MyClass, it is a member of MyClass. The table is not
exhaustive, but gives you a quick reference on writing more efficient C++ code.

Table 6. Examples of writing more efficient C++ code

Before change After change Reason for change

strName = ""; strName =
SchemaConsts::strEmpty;

Eliminate a temporary
IString being constructed.

if (strName != "") if (strName.length() != 0) Eliminate a temporary
IString being constructed.

if (strName == "") if (strName.length() == 0) Eliminate a temporary
IString being constructed.

IString strName = ""; IString strName; Eliminate a temporary
IString being constructed
and copied.

IString strNum;
strNum = strName;

IString strNum(strName); Eliminate calling default
IString constructor.

const IString& func();
IString strName(func());

const IString& func();
const IString& strName(
func());

Eliminate strName being
constructed as a copy of the
IString returned from func().
This can only be done if
strName is used as a const.

In the above example of the optimization of schema.exe, the incremental build
produced an executable of 439,296 bytes in size. When we performed a clean
build, the executable was further reduced to 438,784 bytes. There is a minor
defect that causes this discrepancy. The workaround to produce the target at
the same size repeatedly is to perform clean builds. This will no doubt occur
when producing your application from an automated build process.

Performing a clean build may produce a different size target
Techniques for more efficient C++ programming 79

14.3 Other useful references

For more detailed information on object-based searching in the IDE, see
Appendix 15.6, “Search for objects, not for strings” on page 86.

Other tips on optimizing your code are provided in the VisualAge C++ Migration
User’s Guide and Reference, available at:

www.software.ibm.com/ad/visualage_c++/downloads.html.

MyClass::MyClass() {
strName = "-";
}

MyClass::MyClass()
: strName("-") {
}

Eliminate calling default
IString constructor.

MyClass::MyClass() {
strName = "";
}

MyClass::MyClass() {
}

Eliminate a temporary
IString being constructed.

MyClass::MyClass(const
IString& aName) {
strName = aName;
}

MyClass::MyClass(const
IString& aName) :
strName(aName) {
}

Eliminate calling default
IString constructor.

catch(IException exc) catch(IException& exc) Eliminate a temporary
IException being
constructed.

func(const IString& aName
);
func("some string");

func(const char* pszName
);
func("some string");

Eliminate a temporary
IString being constructed by
all users of func(). If most
users of func() pass an
IString object, then do not
perform the change.

// strPlace, strColor, a, b, x, y
// and z are of type IString.
strName = a + b + x;
strPlace = a + b + y;
strColor = a + b + z;

IString strAB(a + b);
strName = strAB + x;
strPlace = strAB + y;
strColor = strAB + z;

Eliminate two
concatenations of strings
a and b.

Before change After change Reason for change
80 Getting to Know VisualAge C++ Version 4.0

Chapter 15. Working in the IDE

The first time you work with it, the vast array of functions in VisualAge C++ may
seem intimidating. There are, however, many useful and powerful features that
are worth learning. In this chapter, we discuss some of these features.

15.1 See how your source code was interpreted

A fast way to see how your code looks after preprocessing is to use a Token
Stream view of your source file.

The Token Stream view shows your source code with all macros or variables
resolved to runtime values. This can also be a handy way to skim through the
logic in your source code, as it does not display #includes and comments.

This is most useful when you have to trace the source of an error message. If you
select a message in the Messages view and click mouse button 2 over it, you will
have the option of opening the message as a workbook section. When you do
this, you will see a page showing a Token Stream View and a source view of the
code that generated the message.

You can change the view for any code object (such as a function, message, file,
class, and so on) in any pane to a Token Stream view.

Examples of the Token Stream view appear in the next section, 15.2, “Using the
IDE to investigate build errors” on page 81.

Note: You cannot open a Token Stream view for a configuration file. You can
however, see an "Interpreted" view, which is similar. Read 15.7, “See how your
configuration file was interpreted” on page 87.

15.2 Using the IDE to investigate build errors

Our sample project includes a component, schema.exe, which uses two source
files that define a macro with different values. SchemaParser.cpp and
SchemaParser.hpp both define the macro YYSTYPE. However, we eventually
found that we needed to use the value defined in SchemaParser.cpp. Here is an
example in which we encountered a build error, traced the source of the error,
and corrected the error, using some of the views in the IDE.

At first, we built our source code with both files promoted as non-macro source
files. We got the build errors shown in Figure 14.
© Copyright IBM Corp. 2000 81

Figure 14. Identifying a compiler error due to a conflicting declaration

We selected the first message. The source view below the messages showed us
the conflicting declaration (Figure 15). The fact that one declaration is an extern,
and the other is not, is unimportant. What is important is to find out what
YYSTYPE is.

Figure 15. Identifying the conflicting declaration

YYSTYPE contains all uppercase characters. This was a hint that it was a macro.
However, we were not sure that it was a macro. If we used the Macros view, we
would see only those macros contained in files already promoted as macro
sources. Instead, we used the Token Stream view to see what value YYSTYPE
had (if it was indeed a macro) for each of the two declarations.
82 Getting to Know VisualAge C++ Version 4.0

To access the Token Stream pane for each declaration, we positioned the mouse
pointer over each message and double-clicked. (You could also click the right
mouse button and select Open as a Workbook Section from the pop-up menu.)
For the first declaration, the value of YYSTYPE is Symbol shown in Figure 16:

Figure 16. Value of YYSTYPE in first conflicting declaration

For the second declaration, the value of YYSTYPE is int, as shown in Figure 17.

Figure 17. Value of YYSTYPE in second conflicting declaration

Notice that the values are different for the two declarations. This is why we were
getting a compiler error. By looking further into this, we found out that
SchemaParser.cpp and SchemaParser.hpp both define YYSTYPE, and that the
latter would only define it, if it was not already defined. We also knew that we
wanted the definition fromSchemaParser.cpp. The solution was to promote
SchemaParser.cpp as a macro source file.

15.3 Quickly see and promote your included files

A fast way to identify the source files that are currently considered secondary
sources is to use a Source Files view of your project (use the Source Files page
in the Project section).

Files that are considered primary source files are shown with an S graphic. Those
that are #included are shown with an I graphic. To promote the included files,
select one or more of those shown with an I, click mouse button 2, and select Add
source to configuration, Add source to source directive, or Add source to
target directive from the pop-up menu. If you select Add source to
configuration, the source file will appear in a separate directive at the top of the
configuration file (that is, it will not be added to the list of source files associated
with any target).

By default, this view is filtered to show you only the files that are considered your
files. Files located in any of the directories created by the VisualAge installation
are hidden. If you remove the filter, you will see all the files that are built.
Working in the IDE 83

If you want to promote system files to your configuration, remove this filter by
clicking on the filter symbol in the pane title bar and selecting Show All from the
list of filters.

With the filter removed, you can see all the files that are built in your
configuration, including standard library header files.

15.3.1 Notes on C source files
• Files that are included by sources that are processed as C files will still appear

as ’I’ objects in the Source Files view, even if you promote them in the way
described above.

• The Source Files view can also serve as a fast way to locate those files that
are not currently recognized as compilable by the C++ compiler. For example,
if you have a primary source file called "testfile.c", but do not have the type
clause type(’cpp’) in your source directive, this file will be displayed with a
’ExtSrc’ graphic. This means that the compiler is launching an ’extension’ (in
this case, the C compiler) to compile this file. This is much slower on
incremental builds than using the C++ compiler, as compiled C code is not
stored in the codestore. Locate these files in the configuration, and add the
appropriate type clause to the source directive to prevent this from happening.

15.4 Which files include other files?

Note: This feature is not available on VisualAge C++ for AIX.

While the Source Files view gives you a quick list of included files, it does not tell
you which files include which other files. In VisualAge C++ for OS/2 and
Windows, there is another, graphical view to show you this information: the
Include Hierarchy view. You can change certain panes in pages of the Project
section to show this view. Figure 18 shows an example:

Figure 18. An Include Hierarchy view of the payroll sample

In this view, the slider and magnifying glass symbols on the left allow you to zoom
in or out. This example is set to a "vertical" arrangement in the View Settings
(found in the Workbook section); this means that the expandable nodes (shown
as + or - symbols) expand in a vertical fashion. The arrows point to the including
file.
84 Getting to Know VisualAge C++ Version 4.0

To change the view in a pane, pull down the view type menu (see Chapter , “The
view type menu” on page 96 for an illustration) and select the view you want.

15.5 Customize pages

You may find there are times when the default arrangement of views in the
various predesigned pages does not suit your needs. You can change the size
and shape of existing panes, add or remove a pane altogether, and save all your
settings.

Here is an example exercise that demonstrates the following:

• Adding a new page to a section

• Changing the linking state of a pane

• Creating a new page description

Follow these steps to add a new Source view to the File System page, so that you
can compare two files from different projects, and then save the settings and add
a page button for the new page layout:

1. Go to the File System page in the Host section, and browse to the
/idesamp/evenodd subdirectory from the VisualAge installation directory.

2. Select any file in the Files view to make sure it has focus, and so that the
Source view below will have some content. When you add a new pane, it is
automatically linked to the pane that currently has focus.

3. Hold your mouse pointer over the right or left edge of the Source view (the
Files view should still have focus), and hold down the Ctrl key.

4. When the pointer turns to a large arrow with a plus (+) sign, drag it toward the
center of the window. Release the mouse when the new pane is approximately
half the width of the window.

5. If the view in the window is not a Source view, pull down the view menu and
select Source. Both Source views should be the same now.

6. In the Files view, select the evenodd configuration file (evenodd.icc). Both
Source views should show the contents of this file.

7. Switch focus to one of the Source views. Pull down the object menu, and
select the broken arrow, as shown by the first checkmark in Figure 19.
Working in the IDE 85

Figure 19. Temporarily disconnecting the link into a pane

8. This will disconnect the link that causes the pane to update each time a new
file is selected. In effect, it will "freeze" the view with evenodd.icc.

9. Now, browse through the File Tree view to a different subdirectory, for
example, /mle. Select mle.icc in the Files view. You now have two Source
views showing two different files. You can copy and paste between them
easily. If you want to increase the viewable area in the Source views, resize
them to make them deeper.

10.Now, save the new page setup. Pull down the Page menu, and select Save
Page Description As....

11.In the Save Page Description As dialog, type a name for the new page setup,
such as Comparison. Make sure the radio button to Add as New Page
Description is selected. After you click OK, a page button with the new page
name is added to the workbook section. You can view different files in the
"frozen" pane by reattaching the link, browsing to a new file, and disconnecting
the link again. If you decide to remove the page later, the page description will
remain available, and you can add it to the workbook again without repeating
these steps. For more details, search for "Add a page" in the online help.

15.6 Search for objects, not for strings

As your project grows, finding specific lines of code becomes a more daunting
task. Sometimes, a simple search for a function name (a string search) will yield a
long list of possible matches: the function name, other names that may include
the function name, and comments that mention the function. In other cases, the
search results may be too narrow to locate all the uses of your object. For
example, if you are looking for all the places where a class is used, you may not
only be interested in finding occurrences of a specific class name.

The Find Uses search is a quick and easy way to filter your search by the type of
object you are looking for, and eliminate hits on lines that do not concern you. Try
the following, to see how the Find Uses function differs from the regular search
function:
86 Getting to Know VisualAge C++ Version 4.0

1. Open the payroll sample in the idesamp directory.

2. On the Search page, type class employee in the Search field of the Search
view, and press Enter, or click the flashlight button. This search yields only one
match.

This is enough, if you only want to find the definition of the class. But what if
you wanted to find classes that inherit from this class as well?

3. Switch to the Find Uses page. From the Declarations view, select the first
declaration (the employee class declaration). The Find Uses view should show
four matches: the definition of this class and the definitions of the other
classes which inherit from it.

4. Now return to the Search page and search only for the string employee. This
would be one way to use a string search to include definitions of classes that
inherit from the employee class. However, this search yields many more
matches: 32 in total, including every comment that mentions the class, and
text strings that include the word employee.

Note: When using the Find Uses view or any Search view, including Live Find
within a view, be aware that the search you perform may be restricted by two
factors:

1. A filter on the view. For more detailed information on filtering, please see
Appendix , “The filter menu” on page 95.

2. The scope of the object you are searching. A search in any view will only look
as far as the object the view is linked to. See Appendix , “The object menu” on
page 95 for instructions on changing the object viewed.

15.7 See how your configuration file was interpreted

How do you tell when you have made a mistake in your makefile? You wait for the
build to fail, right? Not so with configuration files. If you have conditional
processing, calls to environment variables, or variables of your own set up in your
configuration file, you can see exactly how they will be evaluated without
launching a build, by using the Interpreted view of the file in the Advanced page
of the Configuration section.

Here is an example of an unprocessed configuration file:

if $__TOS_AIX__
{

TARGETNAME="program"
option architecture=gen(arch,601)

}

if $__TOS_WIN__
{

TARGETNAME="program.exe"
option architecture=gen(arch, pentium2)

}

option link_options=link(linkwithmultithreadlib, yes),
link(linkwithsharedlib, yes)

option lang_options=lang(nokeyword, "bool"),
Working in the IDE 87

lang(nokeyword, "true"),lang(nokeyword, "false")

option architecture, link_options, gen(rtti, yes)
{
target TARGETNAME

{
option lang_options

{
source "common\\pause.cpp",
"version1\\filer.cpp",
"version1\\main.cpp",
"version1\\timekeeper.cpp"
}

}
}

Figure 20 on page 89 shows how this file looks after it has been parsed. The
Interpreted view resolves the if statements, and replaces variables with the
calculated values. For example, if you are working on a Windows system, the
directive block beginning with if $__TOS_AIX__ would be ignored; this is shown in
the Interpreted view as greyed-out text. The directive block beginning if

$__TOS_WIN__ evaluates to 1, or true. The options that were applied are shown in
darker text, and those that were ignored are greyed out.
88 Getting to Know VisualAge C++ Version 4.0

Figure 20. Interpreted ("preprocessed") configuration file

15.8 IDE Shortcuts

If you do not enjoy typing or browsing through menus to perform tasks, some of
the tips in this section may be useful to you.

15.8.1 Create new configuration files
If you create configuration files by typing the directives into a text file, you must
first save the file with an .icc extension, then open a project by selecting this file.
However, if you use the Project SmartGuide, you will not have to type the
contents, and you will have the option of having the project immediately opened
for you.

To start the SmartGuide, select Create Project... from the Project Workbook
menu. Based on the selections you make for your project in this wizard, options,
source directives, and target directives will all be automatically added to the
Working in the IDE 89

configuration for you. You can always tune or edit the configuration later; this is a
fast way to get started.

15.8.2 Help on OpenClass classes
To access reference help on IBM Open Class classes, you do not always have to
navigate from the Help Home Page. Instead, try this:

1. Select a class name or member function name in a Source view.

2. Right-click on the highlighted word to open the pop-up menu.

3. From the pop-up menu, select the class object (C) or member function (F). A
second pop-up menu appears.

4. From the second menu in Figure 21, select Reference help. This launches the
online help, and opens it to the information on this class or member function.

Figure 21. Finding reference help for IBM OpenClass classes

15.8.3 Live Find
Press Ctrl+F to open the Live Find search bar. Press Esc to remove it.

15.8.4 Switch pane focus
You do not need to use the mouse: F6 will move the focus to the next pane in a
page.

15.8.5 Start a build
Press Ctrl+Shift+B.

15.8.6 Show the link diagram
If you frequently make use of the link diagram, you may find it faster to add the
Show/Hide links icon to your toolbar.

Click the Toolbar configuration in the Settings page, in the Workbook section.
Select the Workbook toolbar. In the list of available icons, highlight the Show
Links icon, and click Add>>.
90 Getting to Know VisualAge C++ Version 4.0

15.9 Make more real estate available

Getting crowded on your screen? Table 7 shows a few ways to can simplify the
workbook:

Table 7. Clear up screen space in the IDE

What you can do How to do it How to undo it

Hide toolbar icons Workbook section->
Settings page-> Toolbar
Configuration button.
Deselect the Show Toolbar
checkbox for each of the four
Toolbars.

Reset the checkbox (do not
forget to pull down the list of
Toolbars and reset the
checkbox for each one).

Hide section tabs (note: this
will also hide the page
buttons)

Click on the maximize button
at the far right end of the
menu bar (directly below
window-maximize/minimize
buttons).

Click again.

Set screen fonts smaller Workbook section->
Settings page->Default font
size (select Small)

Same steps (select another
size)

Hide pane title bars Workbook section->
Settings page-> Select the
Auto hide pane title bar
checkbox

To show title bars
temporarily, hold mouse
pointer over top edge of the
pane. To restore title bars
permanently, deselect the
Auto hide pane title bar
checkbox

Fit more tabs in the
workbook

Workbook section->
Settings page->Section Tab
and Page Button
Style->Select Proportional

Follow same steps; select
Fixed.
Working in the IDE 91

92 Getting to Know VisualAge C++ Version 4.0

Appendix A. Guide to interface elements

Here we supply a brief list of the elements of the Integrated Development
Environment (IDE), to help you understand terms used elsewhere in this book.

A.1 The workbook

The IDE is designed to resemble a workbook, divided into sections by tabs,
shown in Figure 22:

Figure 22. Tabs divide the major workbook sections

Within each section, a selection of page buttons will take you to different pages.
While all the pages in a section show a different combination of views, they will all
be linked to the same object. This means that all the views show a perspective on
the same object: in Figure 23, for example, the object on the section tab is the
host (the machine). So, pages in this section will not contain views of your project
setup, or of objects contained in your code. Instead, they will contain views in
which you can browse objects related to the host machine, such as directory
structures and files.

Figure 23. Pages in the Host section

Similarly, pages in the other default sections provide views related to the section:

• Pages in the Workbook section provide views for controlling the workbook
itself (settings for views, font size, toolbar arrangement, and so on.)

• Pages in the Project section provide views for performing tasks related to the
contents of your project (such as viewing source files or classes, and
debugging programs.)

• Pages in the Configuration

New sections can be opened to show objects other than the default set, and
sections you are not using can be removed and replaced easily. If you have many
sections open at once, and cannot see all the tabs, you can scroll through the
selection with the buttons to the right of the tabs.

You can open a new section for virtually any object in the IDE: click on the object,
click mouse button 2, and select Open as a Workbook section from the pop-up
menus. When the section is opened, one or more pages may automatically be
© Copyright IBM Corp. 2000 93

added, but only those views relevant to the object shown on the section tab will
be available.

A.2 Pages

Each workbook section offers a default selection of page buttons like the set
shown in Figure 24:

Figure 24. Page buttons available in the Project workbook section

Each page is a collection of panes, which contain views. The views available in
each pane depend on the object the pane is linked to. In the default arrangement
of views on these pages, the object shown on the workbook section tab
represents the widest scope, and each of the views represents a particular focus,
or narrowed scope, on that object. However, you can adjust the scope of any of
the views to suit your needs.

The selection of page buttons available in each section of the workbook can be
changed easily. You can design pages of your own and remove pages you do not
use often. Replacing them later is easy.

A.3 Panes

There are four menus that control what appears in each pane. From left to right,
they are:

The pane menu

This controls the pane itself; you can then remove the pane, rearrange the page
(that is, move the panes) or to enlarge the view to fill the page (maximize the
pane).See Figure 25.

Figure 25. The pane menu
94 Getting to Know VisualAge C++ Version 4.0

The filter menu

Figure 26. The filter menu

The menu shown in Figure 26 lists all the possible ways you can focus the current
view. By default, all views with filters have the My Objects filter selected. This
means that they will only display views of objects (source code) that you have
provided; system header files are not displayed.

Note: If you perform a search in a view with any filter other than Show All applied,
the scope of the search is similarly restricted. (When a red dot appears next to
the filter symbol, a filter is being applied; the dot disappears when Show All is
selected).

Here is an example of how filtering affects searching:

You have included the header file iostream.h in your project by issuing a #include
directive in a source file, but you have not listed iostream.h directly in your
configuration file. You want to search for a string that appears only in iostream.h,
so you go to the Search page and are using the Search view, with the default filter
(My Objects) appplied. In this case, the search will fail to find the string. "My
Objects" refers only to those sources you have created. It excludes any files from
the VisualAge C++installation directories.

To ensure system header files are included, you must select the Show All filter.

To see or change the criteria that define each filter, use the Filters page in the
Workbook section.

The object menu

Figure 27 shows the menu that determines which object is being displayed in the
view.
Guide to interface elements 95

Figure 27. The object menu

Depending on which other panes the pane is linked to, the object can be as broad
in scope as the project, or as granular as a function. For different types of objects,
different types of views are available.

To "freeze" a pane with the view it is currently showing (for example, if you want to
select a different object in another, but you don not want the contents of this pane
to change), select the broken arrow from this menu (second item). This
disconnects the link from other panes to this pane, until you reconnect it by
selecting the first arrow.

To view a different object, you can select objects from the Opened Objects or the
Recently Used Objects lists. When you do this, the link going into this pane will
automatically be broken (as though you had selected the broken arrow in addition
to selecting a new object). To restore the view, simply reselect the first arrow.

The view type menu

Figure 28 shows an example of the different types of views available in a pane.
96 Getting to Know VisualAge C++ Version 4.0

Figure 28. The view type menu

In Figure 28, list of view types is also called the view list. It is the list of views that
can be applied to the object currently being viewed by this pane. Not all view
types apply to all objects. Change the view by selecting the new view type from
this list.

A.4 Toolbars

The row of icons at the top of the IDE window is actually a collection of several
toolbars. A toolbar is a set of buttons for performing actions related to a specific
part of the workbook.

There are four different toolbars, not all of which may appear on your screen:

• The Workbook toolbar, shown in Figure 29, provides buttons for project-wide
actions, such as beginning or stopping a build, or opening a new project.

Figure 29. The workbook toolbar

• The Pane toolbar, shown in Figure 30, has buttons for actions related to a
single pane, such as connecting links and scrolling through the history of
objects that have been viewed in the pane.

Figure 30. The pane toolbar
Guide to interface elements 97

• The View toolbar, shown in Figure 31, offers a different selection of buttons,
depending on the type of view in the pane that currently has focus. The
buttons shown here, for editing tasks, appear when a Source view has focus.
At other times, you may only see the Live Find button (the flashlight), or
another combination of buttons.

Figure 31. The view toolbar

• Finally, the Process toolbar, shown in Figure 32, offers debugging actions.

Figure 32. The process toolbar

At most times, you will only see one or two of these toolbars on your screen.

To make sure all the toolbars you want to see will display at the appropriate times,
check the toolbar settings in the Workbook section. Select the Settings page, and
click on the Toolbar Configuration button. In order for any toolbar to display, the
Show toolbar checkbox must be checked for that toolbar. Each toolbar must be
selected individually from the pull-down list at the top of the toolbar configuration
window. In the current release, there is no way to select or deselect all the
toolbars at once.
98 Getting to Know VisualAge C++ Version 4.0

Appendix B. Special notices

This publication is intended to help software developers who use C++ to develop
applications using IBM VisualAge C++ Professional, Version 4.0. The information
in this publication is not intended as the specification of any programming
interfaces that are provided by IBM VisualAge C++ Professional, Version 4.0. See
the PUBLICATIONS section of the IBM Programming Announcement for IBM
VisualAge C++ Professional, Version 4.0, for more information about what
publications are considered to be product documentation.

References in this publication to IBM products, programs or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM's product, program, or service may be used. Any functionally
equivalent program that does not infringe any of IBM's intellectual property rights
may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact IBM Corporation, Dept.
600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The information contained in this document has not been submitted to any formal
IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed by
IBM for accuracy in a specific situation, there is no guarantee that the same or
similar results will be obtained elsewhere. Customers attempting to adapt these
techniques to their own environments do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of these
Web sites.
© Copyright IBM Corp. 2000 99

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United States
and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and other countries licensed
exclusively through The Open Group.

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service marks
of others.

AIX AS/400
AT CICS
IBM Netfinity
Open Class Operating System/2
OS/2 OS/390
OS/400 RS/6000
S/390 System/390
VisualAge 400
100 Getting to Know VisualAge C++ Version 4.0

Appendix C. Related publications

See the CD-ROM references below for a more detailed discussion of the topics
covered in this redbook.

C.1 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177
Networking and Systems Management Redbooks Collection SK2T-6022
Transaction Processing and Data Management Redbooks Collection SK2T-8038
Lotus Redbooks Collection SK2T-8039
Tivoli Redbooks Collection SK2T-8044
AS/400 Redbooks Collection SK2T-2849
Netfinity Hardware and Software Redbooks Collection SK2T-8046
RS/6000 Redbooks Collection (BkMgr Format) SK2T-8040
RS/6000 Redbooks Collection (PDF Format) SK2T-8043
Application Development Redbooks Collection SK2T-8037
IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 2000 101

102 Getting to Know VisualAge C++ Version 4.0

How to get ITSO redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks, redpieces, and
CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also read
redpieces and download additional materials (code samples or diskette/CD-ROM images) from this redbooks
site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few chapters will
be published this way. The intent is to get the information out much quicker than the formal publishing process
allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest information
may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order” section at
this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl/

IBM employees may register for information on workshops, residencies, and redbooks by accessing the IBM
Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button. Look in the Materials
repository for workshops, presentations, papers, and Web pages developed and written by the ITSO technical
professionals; click the Additional Materials button. Employees may access MyNews at http://w3.ibm.com/ for
redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 2000 103

IBM Redbook Fax Order Form
Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
104 Getting to Know VisualAge C++ Version 4.0

Glossary

Assignment directive

The ’=’ in a configuration file. In other words, this is the
directive that assigns a value to a variable.

Codestore

The database of information generated when VACPP
builds a project. This includes information about the
sources used to build the project, the relationships
between those sources, relationships between
functions, options, and debug information. The
codestore is stored in an .ics file.

Configuration

The set of source files, options, variables and targets
that make up a single project.

Configuration file

A text file composed of directives that control what is
compiled, which sources are used, and which options
and variables are applied when VACPP builds a
project.

Incremental compilation

Compiling only those granular parts, such as C++
methods, that have changed or been affected by
change since the previous build. This is in
contrast to traditional batch compilers that
compile larger parts, such as entire files.

Filter

A set of criteria applied to a view to exclude selected
types of information from the view. If a filter is currently
being applied to a view, a red dot will appear next to
the filter indicator on the pane title bar.

See Appendix , “The filter menu” on page 95 for an
illustration of the filter indicator and menu.

Macro source

A source file containing macros, and specified as such
by the option macros(global,yes). (That is, the source
file is listed within the { and } of the option directive.)

Macros in these sources are visible to all non-macro
source files, as well as to any other primary macro
sources in the same configuration file.

One-definition rule

The rule specified in the C++ standard that states:

1. A translation unit must not contain more than one
definition of any variable, function, class type,
enumeration type, or template.

2. A program must contain exactly one definition of
every non-inline function or object that is used in that
program. The definition may appear explicitly in the
program or in a library, or it may be implicitly defined
by the compiler (as in the case of an implicit
© Copyright IBM Corp. 2000
constructor). An inline function must be defined in
every translation unit in which it is used.

Option directive

The directive (the word option) that identifies the
keyword or list of keywords that follow it as options, or
as the name of a group of options.

Page description

The set of criteria that form a "template" for a page in
the IDE workbook. It describes how many panes are in
the page, which views are displayed in the panes, and
which object the page is showing. You cannot directly
edit a page description but you can modify it by making
changes to the page and selecting Save Page
Description or Save Page Description as... from the
Page menu.

Primary source

A source file that is listed in the configuration file.

Promote (a source file)

To make a secondary source file into a primary source
file by adding it to the configuration file.

Secondary source

A source file that is not listed in the configuration file,
but is built as part of the project because it has been
included in another source file.

Source

A source is any file used as input to a build. A source
can be a C++ file, a header file, resource file, object
file, and so on.

Source directive

The directive (the word source) that identifies the
filename or list of filenames that follow it as input to a
build.

Target

The output of a build. This can be an executable file,
library, or object file.

Target directive

The directive (the word target) that identifies the
filename that follows it as the output of a compilation.

Type clause

The specifier, of the form type(string) that can be
included in a source directive in order to identify a
source file as a type recognized by the compiler, for
example, type(cpp) in the following source directive is
the type clause:

source type(cpp) testfile.i
105

Target directive

The directive (the word target) that identifies the
filename that follows it as the output of a compilation.
106 Getting to Know VisualAge C++ Version 4.0

List of abbreviations

DLL Dynamic Link Library

IBM International Business
Machines Corporation

ITSO International Technical
Support Organization

OS/2 Operating System/2

NT New Technology
© Copyright IBM Corp. 2000
 107

108 Getting to Know VisualAge C++ Version 4.0

Index

C
C source files 84

processing as C++ 10
reference in online help 13

codestore
impact on compilation process 4

commands
as a parameter of run directive 31

conditional processing
with variables 27

Configuration file
differences vs makefile 3
introduction to 9

configuration files
optimizing 21

D
Dynamic Link Library

vs static library 35
Dynamic Link Library (DLL)

building 35
example of building and linking to 36
linking against in a configuration file 35

E
environment variables

predefined 29
errors

CPPC0274E 20
CPPC0400E 82
CPPC0836E 45
CPPC0848E 47
CPPC0921I 47
CPPC1930E 10

F
filters

removing 95

I
incremental compiler

differences vs batch compilers 3

M
macro sources

considerations when promoting 68
order of listing 68

macros
defined more than once 81
find in source files 68
predefined 29
viewing values 82
© Copyright IBM Corp. 2000
O
optimization

promoting included files 21, 67
option directive, definition 15
options

applying to a subset of your sources 16
applying to entire project 16
example of using an option group 27
information on mapping of old to new style 20
introduction 15
most commonly used 20
types 19

P
panes 94

changing the view in a pane 96
closing 94

projects
efficient organization 53

R
run directive

how it is processed in incremental compilation 38
run after 31
run before 31
run cleanup 31
where to place it 33

run directive, definition 31

S
shared library

advantages of 35
source directive, definition 9
sources 9

as a parameter of run directive 31
identifying as macro sources 16
introduction to 9
promoting included files to the configuration 21
types recognized by VisualAge 13

T
target directive, definition 9
targets 9

as a parameter of run directive 31
toolbars

can’t see them all? 98
tools 31

and incremental compilation 38
example of running tools in a build 31
passing commands to 31

type clause, definition 10
109

V
variables 25

example of using in a configuration file 26
rules for using 26
110 Getting to Know VisualAge C++ Version 4.0

© Copyright IBM Corp. 2000 111

IBM Redbooks evaluation

Getting to Know VisualAge C++ Version 4.0
SG24-5489-00

Your feedback is very important to help us maintain the quality of IBM Redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

SG24-5489-00

Printed in the U.S.A.

G
etting

to
K

now
V

isualA
ge

C
+

+
V

ersion
4.0

SG
24-5489-00

®

	Contents
	Figures
	Tables
	Preface
	The team that wrote this redbook
	Comments welcome

	Chapter 1. The leap to VisualAge C++ Version 4.0
	1.1 Incremental compilation and linking
	1.2 What? No makefiles?
	1.3 The codestore
	1.4 Earlier error reporting
	1.5 The latest C++ standard
	1.6 Reusable libraries—Standard Template Library and OpenClass
	1.7 Integrated Development Environment

	Chapter 2. About the sample project
	Chapter 3. An introduction to configuration files
	3.1 Targets
	3.2 Sources
	3.3 If you are migrating
	3.4 A different route to compilation
	3.5 Other useful references

	Chapter 4. Adding options
	4.1 How options work
	4.2 Applying an option to a limited number of sources
	4.3 Options with project-wide scope
	4.4 Options in a makefile
	4.5 How the makefile options are translated
	4.6 Option types
	4.7 Common options you might need
	4.8 Other useful references

	Chapter 5. Promoting included files to the configuration file
	5.1 Why optimize so early?
	5.2 First steps in optimizing
	5.3 What to promote?
	5.4 Is that all?
	5.5 If you are migrating
	5.6 Other useful references

	Chapter 6. Variables
	6.1 User-defined variables in configuration files
	6.2 Rules for using variables
	6.3 Example of a configuration file using variables
	6.4 Variables make conditional processing easier
	6.5 Variables in a makefile
	6.6 Other useful references

	Chapter 7. Running external tools
	7.1 The run directive
	7.2 Running tools before compiling and linking
	7.3 Tool commands in a makefile
	7.4 Other useful references

	Chapter 8. Building a shared (dynamic link) library
	8.1 Advantages of shared libraries
	8.2 Configuration files simplify building dynamic link libraries
	8.3 Linking against other dynamic link libraries
	8.4 About the example
	8.5 The libFramework.icc configuration file
	8.6 How do external tools fit into the incremental build process?

	Chapter 9. Building an archive (static library)
	9.1 Static linking versus dynamic linking
	9.2 Configuration for building a static library
	9.3 Changing libUIFwk.icc to build a DLL

	Chapter 10. Building a resource library
	10.1 About the example
	10.2 Configuration file for a resource DLL
	10.3 Makefile for a resource DLL
	10.4 Differences between the configuration file and makefile
	10.5 Problems with building the resource library
	10.6 Other useful references

	Chapter 11. Building two targets in one configuration
	11.1 Building schema and spp in one configuration
	11.2 Keeping in step with the one-definition rule
	11.3 Breaking the one-definition rule within one target
	11.4 Why is the one-definition rule not enforced by other compilers?
	11.5 Other useful references

	Chapter 12. Designing configuration files for project teams
	12.1 Splitting a project into architectural areas
	12.1.1 Infrastructure
	12.1.2 User interface
	12.1.3 Business logic

	12.2 Your project’s directory structure
	12.2.1 Reasons for having a directory structure
	12.2.2 Avoiding time-consuming directory searches during builds
	12.2.3 Be aware of platform differences

	12.3 Splitting a project into components
	12.4 Reusing elements of configuration files
	12.4.1 Design points for identifying reuse
	12.4.2 Promoted source directives for reusable components
	12.4.3 Placement of reusable configuration files

	12.5 Organizing libFrameworkGroups.icc by grouping sources
	12.5.1 Using groups in configuration libFramework.icc
	12.5.2 Defining groups in configuration libFrameworkGroups.icc
	12.5.3 Adding new files to groups

	12.6 Organizing libFramework.icc by grouping options
	12.7 Organizing one or several targets into a configuration file

	Chapter 13. Techniques for better build efficiency
	13.1 Managing system header files
	13.1.1 Reducing the size of a codestore
	13.1.2 Promoting #include files
	13.1.3 Isolating dependence on expensive header files
	13.1.4 Moving source and header files into a separate library
	13.1.5 Removing files that are no longer referenced
	13.1.6 Removing #include from all your source files
	13.1.7 Results of applying these techniques in our project

	13.2 Developing multiple projects concurrently
	13.3 Automating a project’s build process
	13.3.1 Building our project components collectively
	13.3.2 Configuration file to implement our build process
	13.3.3 Problems with executing our build process

	Chapter 14. Techniques for more efficient C++ programming
	14.1 Find and eliminate literal strings used with IString
	14.2 Find and eliminate temporary copies of objects
	14.3 Other useful references

	Chapter 15. Working in the IDE
	15.1 See how your source code was interpreted
	15.2 Using the IDE to investigate build errors
	15.3 Quickly see and promote your included files
	15.3.1 Notes on C source files

	15.4 Which files include other files?
	15.5 Customize pages
	15.6 Search for objects, not for strings
	15.7 See how your configuration file was interpreted
	15.8 IDE Shortcuts
	15.8.1 Create new configuration files
	15.8.2 Help on OpenClass classes
	15.8.3 Live Find
	15.8.4 Switch pane focus
	15.8.5 Start a build
	15.8.6 Show the link diagram

	15.9 Make more real estate available

	Appendix A. Guide to interface elements
	A.1 The workbook
	A.2 Pages
	A.3 Panes
	A.4 Toolbars

	Appendix B. Special notices
	Appendix C. Related publications
	C.1 Redbooks on CD-ROMs

	How to get ITSO redbooks
	IBM Redbook Fax Order Form

	Glossary
	List of abbreviations
	Index
	IBM Redbooks evaluation

